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Abstract. A realtime online learning system needs to gradually forget old

information in order to avoid catastrophic forgetting. This can be achieved

by allowing new information to overwrite old, as in a so-called palimpsest

memory. This paper describes an incremental learning rule based on the

Bayesian con�dence propagation neural network that has palimpsest properties

when employed in an attractor neural network. The network does not exhibit

catastrophic forgetting, has a capacity dependent on the learning time constant

and exhibits decreasing convergence speed for older patterns.

1. Introduction

In contrast to the arti�cial learning situation often faced by arti�cial neural networks

(ANN), real world learning presents a next to unlimited number of learning examples,

potentially surpassing the storage capacity of the learner by orders of magnitude. An

additional complication is that the world may be non-stationary, partly due to the

changing behavior of the system and its interaction with the environment. In general,

it is critical to give priority to the retention of recent information of a kind that

is relevant to the operation for a capacity limited real world learning system. This

may occur at several di�erent time-scales, as in for example short-term and long-term

memory. These are fundamental characteristics of existing biological learning and

memory systems which are also critical for advanced arti�cial learning systems.

Auto-associative attractor ANNs, like for example early binary associative

memories and the more recent Hop�eld net, have been proposed as models for

biological associative memory [30, 16, 1]. They can be regarded as formalizations

of Donald Hebb's original ideas of synaptic plasticity and emerging cell assemblies

[12]. A number of psychological memory and Gestalt perception phenomena have

been modelled based on such network models [7, 25]. Simulations have indicated that

a network of cortical pyramidal and basket cells can operate as an attractor network

and its connectivity structure captures many aspects of cortical functional architecture

[10, 9, 6, 5].

The standard correlation based learning rule for attractor ANN su�er from

catastrophic forgetting, that is, all memories are lost as the system gets overloaded.

To cope with this situation Nadal, Toulouse and Changeaux [22] proposed a so called

\marginalist" learning paradigm where the acquisition intensity is tuned to the present
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level of crosstalk \noise" from other patterns. This makes the most recently learned

pattern the most stable; new patterns are stored on top of older ones, which are

gradually overwritten and become inaccessible, a so-called \palimpsest memory". This

system retains the capacity to learn at the price of forgetfulness.

Another smoothly forgetting learning scheme is \learning within bounds"

(originally suggested by Hop�eld [16]), where the synaptic weights wij are bounded

�A � wij � A. The learning rule for training patterns �n is

wij(n+ 1) = c

�
wij(n) +

�ni �
n
jp
N

�
where c is a clipping function

c(x) =

8><
>:
�A x < �A
x jxj < A

A A < x

and the optimal capacity 0:05N is reached for A � 0:4 [23, 3]. For high values of

A catastrophic forgetting occurs, for low values the network remembers only the last

pattern. This implies a decrease in storage capacity from 0:137N of the standard

Hop�eld Hebbian rule; total capacity has been sacri�ced for long term stability.

A learning rule for attractor networks derived from Bayes' rule [2] has previously

been developed [17, 18, 19, 14]. It is a Hebbian rule that reinforces connections between

simultaneously active units and weakens or makes connections inhibitory between anti-

correlated units. This version of the learning rule is based on a probabilistic view of

learning and retrieval, with input and output unit activities representing con�dence of

feature detection and posterior probabilities of outcomes, respectively. The synaptic

strengths are based on the probabilities of the units �ring together, estimated by

counting occurrences in the training data. This learning rule gives a symmetric weight

matrix, allowing for �xed point attractor dynamics (c.f. equation 3 and [16]). It also

generates a proper balance between excitation and inhibition, avoiding the need for

external means of threshold regulation. The update of the weights in the network

resembles what has been proposed as rules for biological synaptic plasticity [20].

In this paper we demonstrate that by estimating the probabilities underlying

synaptic modi�cation by running averages instead of pre-calculated counters it is

possible to derive a continuous, real-time Bayesian learning rule with palimpsest

memory properties. The forgetfulness can conveniently be regulated by the time

constant of the running averages. We evaluate this learning rule in the context of

long-term and short-term memory of an attractor network. The consequences of a

time dependent energy landscape in terms of convergence times are also investigated.

2. Bayesian Learning

Bayesian Con�dence Propagation Neural Networks (BCPNN) [17, 18, 19, 14] are based

on Hebbian learning derived from Bayes' rule:

P (jjA) = P (j)
Y
i2A

P (jji)
P (j)

= P (j)
Y
i2A

P (i; j)

P (i)P (j)

where A = fig and fi [ jg are sets of independent and conditionally independent

events or features that has occurred and P (jjA) is the conditional probability that
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event j will happen given this information. If we take the logarithm of this formula

we get:

log(P (jjA)) = log(P (j)) +
X
i2A

log

�
P (i; j)

P (i)P (j)

�

= log(P (j)) +
X
i

log

�
P (i; j)

P (i)P (j)

�
oi (1)

where oi = 1 if i 2 A and zero otherwise. The last equation is similar to the common

form of neural network action (xj  �j +
P
wijf(xi)), and oi can be identi�ed as the

output of unit i, the fact that event i has occurred or an inference that it has occured.

Since inferences are uncertain, it is reasonable to allow values between zero and one,

corresponding to di�erent levels of con�dence in i. f(x), the transfer function, is a

clipped exponential (see below). The term log(P (j)) can be identi�ed as a bias term,

and the fractional expressions within the sum as weights:

�j = log(P (j)) (2)

wij =

(
log
�

P (i;j)

P (i)P (j)

�
i 6= j

0 i = j
(3)

The network is used with an encoding mode where the weights are set and a

retrieval mode where inferences are made. Input to the network can be introduced by

setting the activations of the relevant units (representing known events or features).

As the network is updated the activation spreads, creating a posteriori inferences of

the likelihood of other features. These inferences can be used as input for further

(informal) inferences, allowing the net to relax towards a stable and consistent state.

One way of measuring the con�dence in the presence of event j is P (jjA), which
can be retrieved from unit activation by the help of an exponential transfer function

(the base for the logarithms and transfer function is irrelevant; for performance reasons

the natural logarithm is used here)

�(x) =

(
exp(x) x < 0

1 x � 0
(4)

We introduce the update rule

oj  �(�j +
X
i

wijoi) (5)

where updates can be synchronous, asynchronous or neurodynamic (as in equation 12).

Since the weight matrix is symmetric an energy function will be de�ned, and

convergence to a �xed point is assured [13]. When initialized with a pattern of

con�dence and allowed to relax, the network state tends towards a consistent \low

energy" state.

Although the learning rule is based on the assumption that the events in A are

independent, in practice the network works well even when there are some correlations

between them [14]. Extended variants of the network have been developed that can

deal with more strongly correlated events [14].
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To derive the connection weights, estimates of the probabilities P (i), P (j), P (i; j)

have to be made. If the training data is already present as C observed pattern vectors

�k with component events �ki the estimates can be easily calculated by counting the

number of occurrences of events i, j and ij in the training data.

ci =

CX
k=1

�kj

cij =

CX
k=1

�ki �
k
j

giving probability estimates p̂i = ci=C and p̂ij = cij=C. Since the logarithm of these

values will be used, special care has to be taken with counters that are zero. In practice

the logarithm of zero is replaced with a number that is more negative than all the

other values of biases or weights in the network [15].

The weights are set to

wij =

8>><
>>:
0 ci = 0 or cj = 0 or i = j

log(1=C) cij = 0

log
�
cijC

cicj

�
otherwise

(6)

and the biases to

�i =

(
log(1=C2) ci = 0

log(ci=C) otherwise
(7)

On the other hand, if the data is arriving over time, the probability estimates

and weights instead have to be estimated from the sequentially available data on-line.

This may be handled by an incremental Bayesian learning.

2.1. Incremental Bayesian Learning

The original formulation of the BCPNN is based on estimating probabilities of events

from a given training set, with no time dependence in the estimate: all data is weighted

equally. A continuously operating network will need to learn during operation. For

example it cannot rely on �xed probability estimates in a non-stationary environment.

Instead it will need to continuously derive estimates of the rates of events, updating

the weights correspondingly.

The input X(t) to the network can be viewed as a stochastic process X(t; �) in
discrete or continuous time (t 2 N or t 2 R) with an underlying probability space

(
; A; P ) (the environment) to B d (the corners of the d-dimensional unit cube f0; 1gd,
representing which of the d features are present).

Let Xi(t) be component i of X(t), the observed input. Then we can de�ne

Pi(t) = P [Xi(t) = 1] and Pij(t) = P [Xi(t) = 1; Xj(t) = 1]. Equation 1 becomes

log(PjjA(t)) = log(Pj(t)) +
X
i

log

�
Pij(t)

Pi(t)Pj(t)

�
oi

In order to use this equation for a BCPNN Pi(t) and Pij(t) need to be estimated

given the information fX(t0), t0 < tg. What we want is an estimate with the following
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properties: i) it will converge towards Pi(t) and Pij(t) in a stationary environment,

ii) it gives more weight to recent than remote information and iii) it smooths or �lters

out noise and adapts to longer trends in a non-stationary environment.

The incremental Bayesian learning rule proposed here estimates the rates (and

hence the weights) using exponential smoothing of unit activities. The units are

assumed to be clamped by the input as the learning takes place. The rate �i of unit

i can be estimated from the current unit activity oi(n) at time n with the following

estimator

d�i(t)

dt
=
oi(t)� �i(t)

�
(8)

where � is a suitable time constant.

The rate �ij of coincident �ring can be similarly estimated

d�ij(t)

dt
=
oi(t)oj(t)� �ij(t)

� 0
(9)

where � 0 is a time constant, possibly but not necessarily equal to � .

These estimates can be combined into a connection weight which is updated over

time:

wij(t) = log

�
�ij(t)

�i(t)�j(t)

�
(10)

�i(t) = log(�i(t)) (11)

Since the weights of the network depend more on recent data than on old data, it

appears likely that a Hop�eld-like network with the above learning rule could exhibit

palimpsest properties if � has a proper value.

The probability estimates converge towards the correct values given stationary

inputs for suÆciently large time constants. In practice it turns out that � 0 = �=2

minimizes transients in the weight values. Since �ij has to balance the product of two

factors, each with a time constant � , it needs to have a half as long time constant.

Since �i(t) and �ij(t) behave as exponential functions in the absence of input

wij(t) � log

 
�ij(0)e

�t=�
0

�i(0)e�t=��j(0)e�t=�

!
= log

�
�ij(0)

�i(0)�j(0)

�
+ (2=� � 1=� 0)t

The second term represents a bias due to the di�erent rates of decay in the estimates;

in order to keep wij(t) constant in the absence of input � 0 has to equal �=2, which

makes the term vanish.

In the absence of any information, there is risk for under
ow in the calculations.

The counting approach (equation 6 and 7) solves this by setting the values that would

otherwise have been in�nitely negative to a negative number of large magnitude.

Another interpretation of this becomes possible in this model: a basic low rate �0 � 1

of events will be assumed to occur, a kind of background activity (noise) that is

present regardless of outside signals. Events will occur at rates between �0 and 1. In

the absence of signals �i(t) and �j(t) now converges towards �0 and �ij(t) towards

�20, producing wij(t) = 0 for large t. The smallest possible weight value if the state

variables are initialized to �0 and �
2
0 respectively is log(4�

2
0), and the smallest possible

bias log(�0). The upper bound on the weights becomes log(1=�0). This learning rule

is hence a form of learning within bounds, although in practice the magnitude of the

weights rarely come close to the bounds.
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3. A Bayesian Attractor Network with Incremental Learning

The learning rule (equations 8{11) of the preceding section can be used in an attractor

network similar to the Hop�eld model by combining them with an update rule

similar to equation 5. The activities of the units can then be updated using a

relaxation scheme (for example by sequentially changing the units with the largest

discrepancies between their activity and their support from other units) or by random

or synchronous updating similar to an ordinary attractor neural network, moving it

towards a more consistent state. This latter approach is used here.

The continuous time version of the update and learning rule takes the following

form (the discrete version is just a discretization of the continuous version):

�o
doi

dt
= �

0
@�i(t) + NX

j=1

wij(t)oj(t)

1
A� oi(t)

�
d�i

dt
= [(1� �0)oi(t) + �0]� �i(t)

2�
d�ij

dt
= [(1� �20)oi(t)oj(t) + �20]� �ij(t)

�i(t) = log(�i(t))

wij(t) = log

�
�ij(t)

�i(t)�j(t)

�

(12)

where �o is the time constant of change in unit state and �(x) the transfer function

from equation 4. As is shown in Appendix A it is possible to derive expressions in

closed form of the � and derived variables.

� = 1=� is the inverse of the learning time constant; it is a more convenient

parameter than � . By setting � temporarily to zero the network activity can change

with no corresponding weight changes, for example during retrieval mode.

In the rest of this paper �0 will be set to 0.001.

3.1. Single Synapse Behavior

We �rst study how the weight wij between units i and j changes with correlation of

unit activities (the activities are simply set to zero or one, i.e the activity update rule

is not used here).

The somewhat counter-intuitive behavior of wij can be seen in �gure 1 for two

correlated and two anti-correlated units. When both units are activated together for

a period of time the connection is strengthened signi�cantly but quickly decays to a

long-lasting steady state. At the end of the steady state period the weight dips to the

negative side and goes to zero; this occurs when the more slowly changing �i and �j
factors catch up with the faster changing �ij factor. If �0 = 0, the time after the end

of stimulation to this event is

t =
2 log

�
1� (1� �)V

�
� log

�
1� (1� 2�)V

�
log(1� 2�)� 2 log(1� �)

where V is the time the two units were activated together (this can be derived by

explicitly solving the recurrence formula for �i and �ij in the discrete time case). t

scales roughly as 1=�2.
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Figure 1. Weights between two units that are active together at 10 � t � 20

(solid line) and when only one unit is active (dot-dash line) and � = 0:05.

During training weights may change sign depending on whether the units they

connect belong to the active units of di�erent patterns (negative weight) or the same

pattern (positive weight), as in �gure 2.

3.1.1. Non-stationary Activities The above situation of two units �ring together

against a background of no activity is somewhat extreme given the assumptions of

the model. A more canonical example of the changes in weights due to randomly

�ring units as well as the response to non-stationary activities can be seen in �gure 3

where the two units are correlated, uncorrelated or anti-correlated with each other at

di�erent times. As can be seen, after a brief transient the weight moves towards a

correct steady state value of log(2) as the units remain correlated. As the correlation

vanishes the weight begins to move erratically due to spurious (anti) correlations, with

a mean close to zero. When the units become anti-correlated the weight decreases

practically linearly towards the baseline negative value of log(4�20) � �12:43. Finally,
when the correlations reappear, the weight quickly increases to the steady state value.

3.2. Network Behavior

In the following experiments the network was �rst trained by the presentation of the

training patterns (the input patterns were each shown to the network for 10 units of

time followed by 10 units of time of no input), followed by a testing period where no

learning took place (� was set to zero). The update rule was not used during training,

i.e the network state was clamped by the input. A discretized version of the update

rule (12) was used.

Figure 4 shows the weight matrix after training with orthogonal patterns. The
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Figure 2. The weight between two units during the training of the network

with sparse random patterns (10% activity, 10 time steps of presentation of

each pattern followed by 10 units of decay with no activity) with � = 0:05.

At time 120 one of the units is recruited into a pattern while the other

remains silent, causing a strong negative weight to develop. At time

200 both units become recruited by the same pattern, making the weight

positive. It then remains positive for the rest of the run, despite occasional

activations and coactivations.

ability to retrieve stored patterns depends on the time constant and the number of

patterns. During fast learning (large �) only the latest patterns will be remembered

even if the sequence of patterns is repeated several times.

The performance for a given pattern �i was measured as the percentage of

perturbed patterns which were correctly recalled after relaxation to a tolerance of 0.85

overlap (the overlap was de�ned to be � � o=jj�jjjjojj, the cosine of the angle between
the pattern vector and the retrieved vector). In �gure 5 the perturbed pattern is �i+Æ

where Æ is a normally distributed vector with variance 0.3, while in �gure 6 and 7 two

active units had been randomly moved. The di�erent forms of perturbations do not

show any qualitative change in network behavior.

Figure 5 shows a comparison between a traditional sparse Hop�eld network and

a network using our real-time Bayesian learning rule. As can be seen the learning

rule avoids catastrophic forgetting by forgetting the oldest patterns while the recent

patterns remain accessible. Figure 6 shows this in more detail. The forgetting does not

occur immediately: for longer learning time constants the pattern is stored well until

a certain number of interfering patterns have been stored, when it starts to gradually

fade.

Figure 7 shows the number of retrievable patterns to the total set of training

patterns as a function of �. In this experiment exposure to the training set of patterns
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Figure 3. Weights between two units that are active 50% of the time,

completely correlated for 0 � t � 200, uncorrelated for 200 � t � 400,

completely anti-correlated for 400 � t < 600 and �nally correlated again.

The dotted lines correspond to the predicted values log(2), 0 and log(4�20).

In this run � = 0:05.

was repeated a number of times until the weights were stationary. The number of

retrieved patterns scales roughly as O(��1), i.e directly proportional to the learning

time constant, down to � � 10�3 for 50-pattern training sets and � � 10�4 for

500-pattern training sets in this run.

The capacity becomes maximal when the time constant equals the time to run

through the entire training set (�opt = 1=V m, where V is the time each pattern is

shown and m is the size of the training set). If the time constant is larger than the

repetition time the patterns will be mixed by the averaging process and few individual

patterns can be retrieved well, unless the size of the set of training patterns is below

the capacity of the traditional BCPNN (roughly O((N= log(N))2) for sparse activation

[18]). With a training set smaller than the capacity, the network would retrieve close

to all patterns for time constants beyond this maximum.

If a stored memory cannot be retrieved, the activity in general tends towards a

state corresponding to the a priori support exp(��i), the \a priori attractor"; this

makes it possible to detect a retrieval failure by measuring the total activity level.

We have observed few spurious states in these experiments. This is not surprising,

considering that we are in the low load regime due to the short learning time constant.

It has been shown that in this regime of Hop�eld networks spurious states are relatively

rare [13].
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Figure 4. Weight matrix after sequential training with 20 orthogonal

patterns consisting of �ve active units and 95 inactive. Dark = inhibitory

connection, grey = weak connection, white = excitatory connection. The

diagonal blocks consist of the excitatory connections between the units

stimulated by the orthogonal patterns, which gradually fade as they age.

The dark region consists of the inhibitory connections between mutually

exclusive patterns. The strongest excitatory weight is 2.88, the strongest

inhibitory -9.63. � = 0:2.

3.3. Convergence Speed

Figure 8 shows convergence times for the network with an energy stopping criterion.

The energy criterion stops the convergence when the energy E = �(1=2)P
ij
wijoioj+P

i
�ioi reaches below an arbitrary pre-determined level (in this case �100). The

continuous update rule from equation 12 was used (the model was solved using Euler's

method with step length h = 0:1, �o = 1. Trials where convergence did not occur

within 40 time steps were not counted. N = 150, � = 0:067).

The energy criterion is interesting because it does not need knowledge of the

target vector; it is in some sense an intrinsic stopping criterion rather than an extrinsic

criterion. When retrieval occurs in a learning system only partial knowledge of the

target is available in the form of cues, and for recognition tasks (where full retrieval

is not necessary) it is more useful to get a response quickly than to wait for full

convergence before reacting. Similar results can be obtained with a criterion that stops

when the Euclidean norm of the change of state becomes smaller than a threshold.

Using this learning rule, as more patterns are learned, the basins of attraction of

old patterns become more shallow, eventually disappearing altogether. This results in

a change in convergence speed if an energy criterion is used. There is both a di�erence

between patterns, the latest patterns are completed faster than older patterns, and

a linear increase in the convergence time between networks where few patterns have
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(a) Summing
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(b) Incremental

Figure 5. Comparison of the summing BCPNN learning rule and the

incremental learning rule for sparse random patterns (� = 0:1). Solid line:

latest learned pattern, dash-dotted line: �rst learned pattern. � = 0:01

in the incremental case. Network size 100 units. The ratio of correctly

retrieved patterns is shown for the �rst learned pattern �1 and the latest

�n.

been learned and networks where the capacity has been reached (�gure 8 and 9).

Convergence is slowed as the initial activation pattern starts farther and farther

from an attractor. Figure 10 shows convergence times when the network is started with

a mixture between two patterns plus noise. The noise is necessary in order to break

the symmetry; in the absence of noise the network converges to a mixed equilibrium

when given a perfectly 50% mixed input. For the two most recently learned patterns

the convergence time is maximal at a 50% mixture (this is practically identical to

the result in [18] for the non-incremental Bayesian learning rule). When interpolated

between a recent and an old memory the maximum is moved away from the recent

memory, a sign that the old memory has a smaller and weaker attractor than the

newer memory. It can, however, still be retrieved given a similar enough cue.

When stimulated with noise (randomly activated units with the same density as

the patterns) the network either converges to one of the learned patterns or to the

a priori attractor state. The probability of convergence towards a certain memory

decreases with its age (�gure 11). This is in accordance with the results on learning

within bounds due to Geszti and P�azm�andi [8]. They found that as more patterns were

stored thebasins of attraction of old patterns were more and more 
attened energy-

wise, and relaxation tended to move the system to a deeper attractor (i.e. a recent

pattern).
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Figure 6. Forgetting curve during continuous learning. Pattern recall as a

function of list position for di�erent values of � (see legend) in a network

with 100 units. Recall estimated as the frequency of retrieval with overlap

greater than 0.85 150 iterations after a presentation of a pattern where two

active units had been randomly moved. Random patterns, 10% activation,

20 timesteps presentation followed by 20 timesteps of no input.

4. Discussion

We have proposed and characterized a continuous, real-time extension of a previous

Bayesian learning rule [18]. The new rule allows for continuous learning from a stream

of examples without leading to catastrophic forgetting. Instead, old information is

gradually forgotten and only the most recent examples are retained, as in a palimpsest

memory. The memory capacity increases linearly with the learning time constant up

to a limit where it becomes equal to the standard summating BCPNN. This means

that by setting the size of the network and the learning time constant the memory

capacity can be regulated. The time of convergence to a memory state depends both

on the age of the memory and the load on the network.

The learning rule proposed is in some sense similar to marginalist learning [22],

where the new patterns are exponentially ampli�ed. In our case the past instead

decays exponentially which is more biologically plausible. Moreover, one could readily

conceive of ways in which the moving averages employed could be realized by biological

synapses. The learning rule is Hebbian, and can exhibit a graded behavior with

multiple synapse activations as well as a more step-like behavior for single synapse

activation similar to experimental observations in LTP [24].

The original BCPNN learning rule is interesting in that it is based on probabilities

and statistics rather than being a standard Hebbian outer product rule. Furthermore,

palimpsest memories like learning within bounds [16, 23] ignore new information
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Figure 7. Number of correctly retrieved patterns as a function of � for

di�erent sizes of the training set. 100 units, ten randomly active units in

each pattern, 10, 50, 200 and 500 patterns in the training set. Successful

retrieval is de�ned as in �gure 6.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Pattern

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

Figure 8. Convergence time for retrieval of stored patterns at full memory

load. Pattern 1 is the most recently learned pattern. The line represent

the mean of the convergence times. Ten patterns, � = 0:067, N = 100.
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trained with 10 patterns, but has capacity for only around 7. Parameters

as in �gure 8.
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patterns plus 16% noise. The solid curve represents interpolation between

the latest and second latest pattern, the dashed curve interpolation between

the latest and an old pattern (#6). Parameters as in �gure 8.
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Figure 11. Probability of ending up in pattern 1{10 or the a priori attractor

(11) when activating the network with a random pattern (10% activity, 600

trials, parameters as in �gure 8).

supporting an already saturated synapse, while non-supporting information will a�ect

it; throwing out old knowledge is favored regardless of how much evidence has

accumulated for them. The learning rule proposed here does not su�er from such

a drastic cut-o� non-linearity.

Tanaka and Yamada [28] showed that in a Hop�eld-type autoassociative network

the convergence time is on the order of log(N) for successful recall and much longer

for unsuccessful recall. The di�erences in convergence time between recent and remote

memories seems to depend on the 
attening of the basins of attraction for the memories

as new information is overlaid old. This �ts well with our observation of the emergence

of a tail in the convergence time distribution as the oldest patterns are forgotten; the

tail corresponds to slow convergence to the a priori attractor. It might be interesting

to explore the e�ect of sparseness and network size on convergence time. Since the

weights between units are independent of network size, the average magnitude of

the support and hence the convergence speed will increase for larger networks, since

each unit will be connected to more units. If the mean activity grows as slow as

log(N) [18] the memory capacity might be optimal but the support will also only

grow logarithmically.

In our simulations with a fast learning and forgetting "working memory" we have

found that the average convergence time increases signi�cantly with memory load.

This relates to the classical �nding by Sternberg of a reaction time dependence on list

length [27] which has been used to support hypotheses of scanning processes underlying

working memory [21]. Our results suggest that a similar e�ect can be achieved in an

attractor network with fast learning dynamics due to attractors of di�erent strength

and a convergence time dependent on the attractor depth.
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There remain several interesting further extensions to the real-time Bayesian

learning rule proposed here. We are currently working on a soft simultaneity measure

and machinery to cope with delayed reinforcement signals. If the inputs oj(t) to

the learning rule are �ltered using IIR �lters o0i(t) = 
oj(t) + (l � 
)o0j(t � l) it

becomes possible to correlate stimuli with slightly di�erent timing and to do simple

temporal association. Such �ltering could be related to the calcium concentration

dynamics inside neurons, which is increased e.g. by NMDA receptor activation and

presumably involved in learning processes. By giving the pre- and postsynaptic inputs

di�erent time constants 
j and 
j the weight symmetry can be broken, which opens

the possibility for sequence learning and the creation of more complex attractors than

point attractors.

In addition, in a real environment changes are likely to occur at multiple time-

scales. By selecting one single learning time constant, a scale of temporal detail is

selected. The learning system will average out the events that occur on faster time-

scales than the learning time constant and adapt to slower changes. It is interesting

to consider the possibility of having a memory system comprised of multiple networks

with di�erent learning dynamics and degrees of plasticity. A quickly adapting network

would learn and remember presented objects in working memory, while a more slowly

forgetting network might learn from single presentations (as in episodic memory), and

even slower learning and forgetting networks would average individual presentation

events into a "prototypic" semantic memory (cf. [4] for one implementation). A

similar kind of structure is thought to exist in human memory systems [26].

A further important aspect of memory is that of relevance information and print-

now mechanisms, external signals regulating the strength of memory encoding in

a behaviorally useful way. The learning rule proposed here will result in memory

traces that are volatile in the absence of input since the weights are continuously

changing to obey the current rate estimates. This leads to a gradual decay of memory

over time even when little new information arrives. An alternative possibility is to

control learning rate by some kind of relevance or "print-now" signal. In this case,

only simultaneous pre- and postsynaptic activation is not enough to result in weight

changes. It is only when plasticity is enabled by the print-now signal that changes

occur, equally for imprinting and decaying. With regard to our learning rule, we have

found that this can easily be implemented as a change in the learning time constant

(� is increased with the relevance of the situation). This improves retention since the

rate estimates do not decay in the absence of new relevant data. Such a mechanism

relates closely to neuromodulation in the brain, e.g. the e�ect of dopamine [29] and

acetylcholine in synaptic plasticity [31, 11].
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Appendix A. Explicit derivation of �(t)

�i(t) and �ij(t) can be calculated explictly in the continous case given a stimulus

sequence �(t) and the time variation of the time constant � = �(t). The derivation

is the same for �i(t) and �ij(t), so the subscript will be dropped and � and �(i) will

denote the respective input.

Note that equation 12 may be reduced ti the form

d�

dt
= �� � ��

d�

dt
+ �� = ��

De�ne g(t):

g(t) =

Z t

0

�(s)ds) dg

dt
= �(t)

Introducing the intergrating factor eg, we get

d

dt
[eg�] = eg

d�

dt
+�eg

dg

dt
= eg[

d�

dt
+ ��] = ��eg

) eg� =

Z t

0

�(s)�(s)eg(s)ds+ C

�(t) = Ce�g(t) + e�g(t)
Z t

0

��egds = �(0)e�g(t) +

Z t

0

�(s)�(s)e�(g(t)�g(s))ds (A.1)

De�ne �(t; s) as

�(t; s) =

(
1 0 � s � t
0 s > t

Then equation A.1 becomes

�(t) = �(0)e�g(t) +

Z 1

0

 (s;t)z }| {
�(t; s)�(s)e�(g(t)�g(s))�(s)ds

= �(0)e�g(t) +

Z 1

0

 (t; s)�(s)ds

From this an explicit formula for the weights and biases can be calculated.

For example, let

�(t) =

(
1 tn � t � tn + Æn

0 otherwise
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where tn and Æn 2 R. Let �(t) = �. For periods when �(t) = 0 we get

�(t) = �(0)e��t +

Z t

0

�e��(t�s)�(s)ds = �(0)e��t + �
X

tn+Æn<t

Z tn+Æn

tn

e��(t�s)ds

= �(0)e��t +
X

tn+Æn<t

e��(t�tn�Æn) � e��(t�tn) = �(0)e��t +
X

tn+Æn<t

e��(t�tn)(e�Æn � 1)

and if �(t) = 1 (tn+1 < t < tn+1 + Æn+1)

�(t) = �(0)e��t +
X

tn+Æn<t

e��(t�tn)(e�Æn � 1) + 1� e��(t�tn+1)


