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Abstract

The work presented in this thesis deals with neural network models of human memory
based on the Bayesian Confidence Propagation Neural Network (BCPNN). The focus
is to explore how a model derived from a statistical framework can link more abstract
top-down cognitive models with biologically plausible cortex models. Of special interest
is whether it there exists necessary architectural differences between different memory
systems or whether they can all be achieved within the same neural architecture for
different parameter values.

The main contributions are:

A derivation of an attractor neural network based on the BCPNN. The BCPNN frame-
work consists of interpreting network unit activations as probability estimates (“confi-
dence”) in the presence of features or states of the world, and the update dynamics as
Bayesian inference producing posterior estimates from the initially known information.
The process converges to a self-consistent estimate of the state of the world given the
prior known information. Learning consists of updating probability estimates, and by us-
ing exponential smoothing the network becomes able to learn incrementally with a learning
time constant that can be regulated. The network exhibits palimpsest properties, avoiding
catastrophic forgetting by forgetting old patterns at a rate dependent on the learning time
constant. By changing the time constant the network can act both as a fast-learning, fast
forgetting working memory and a slowly learning, slowly forgetting long term memory.
The statistical derivation introduces a degree of modularity with similarities to cortical
hypercolumns. The capacity is found to scale optimally with network size. The conver-
gence time to an attractor state is dependent on training set size and the age of the state,
suggesting a simple parallel model of the Sternberg reaction time effect.

Regulation of the learning time constant enables selective enhancement or inhibition
of learning new information. This regulation acts by changing the relative sizes of basins
of attraction, which can produce retroactive inhibition. Using this regulation an account
of the isolate effect based on plasticity modulation is developed and compared to a model
based on pattern decorrelation.

By adding a phenomenological model of cellular and synaptic adaptation the attractor
states become unstable over time, producing a dynamics of fast convergence to a quasi-
attractor where the network state dwells until slower adaptation forces it to move to
another attractor. This dynamics enables intrinsically driven free recall or reinstatement
that preserves information of basin of attraction size, external control over dynamics
including second-best match and on-line learning during recall.

The network was applied to the delayed response oculomotor working memory task
based on a fast Hebbian plasticity hypothesis of working memory. It reproduced the
behaviour of other simulations and generated a range of experimental predictions.

Based on the assumption of a plasticity-limited memory capacity and the need for
maximising stored information at reproductive age a model of cognitive aging is derived
where the learning rate decreases in an optimal manner. A continuation of learning rate
decrease past reproductive age produces age-dependent memory impairments. This model
produces plausible autobiographical memory curves with infantile amnesia and the auto-
biographical bump.
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Sammanfattning

Denna avhandling behandlar neuronnétsmodeller av ménskligt minne baserade pa bayesian-
ska konfidenspropageringsneuronnit (BCPNN). Fokus ligger pa att utforska hur en modell
hérledd fran ett statistiskt ramverk kan knyta samman abstrakta “top-down” kognitiva
modeller med biologiskt plausibla “bottom-up” modeller av hjirnbarken. Av sérskilt in-
tresse dr frdgan huruvida det existerar nédvéndiga arkitektoniska skillnader mellan olika
minnesystem eller om deras funktionella specialiseringar kan uppnas med hjélp av samma
neurala arkitektur med olika parametervirden.

De huvudsakliga bidragen &r:

En hérledning av ett attraktorneuronnét baserat pA BCPNN. BCPNN-ramverket tolkar
nitverksenheternas aktivering som sannolikhetsuppskattningar (konfidens) av olika kén-
netecken eller tillstdnd i omvérlden och uppdateringsdynamiken som Bayesiansk inferens
av a posteriori sannolikheter fran den ursprungliga informationen. Processen konvergerar
till en uppskattning av virldens tillstdnd konsistent med den tidigare kdnda informatio-
nen. Inldrning utgérs av att uppdatera sannolikhetsuppskattningar, och genom att an-
vinda exponentiell utjimning blir ndtverket kapabelt att ldra inkrementellt och med en
regleringsbar tidskonstant. Natverket uppvisar palimpsestegenskaper och undviker katas-
trofal glomska genom att glomma gamla monster med en hastighet beroende pa inldrn-
ingstidskonstanten. Genom att dndra tidskonstanten kan n#tverket fungera bade som ett
snabbt lirande och gldmmande arbetsminne eller ett ldngsamt lérande och glémmande
langtidsminne. Den statistiska hérledningen introducerar en moduldr struktur som pamin-
ner om kortikala hyperkolumner. Kapaciteten visar sig skala optimalt med n&tverksstor-
leken. Konvergenstiden till ett attraktortillstind beror pa traningsméngdens storlek och
tillstandets alder, vilket kan anvidndas for en enkel parallell model av Sternbergs reaktion-
stidseffekt.

Reglering av inldrningstidskonstanten mojliggor selektiv forstdrkning eller forsvagn-
ing av hur ny information inlirs. Denna reglering verkar genom att foréndra den relativa
storleken av attraktionsbassénger. En modell av isolationseffekten baserad pa plasticitet-
sreglering jamfors med en baserad pa dekorrelerade monster.

Genom att addera en fenomenologisk modell av cellulér och synaptisk adaptation blir
attraktortillstanden instabila 6ver tiden, vilket producerar en dynamik med snabb konver-
gens till en kvasiattraktor dir nétverkets tillstand forblir tills den langsamma adaptationen
tvingar det till en annan kvasiattraktor. Denna dynamik mdjliggor internt driven fri er-
inran eller aterkallande som bevarar information om storlekar pd attraktionsbassinger,
extern kontroll 6ver dynamiken inklusive second-best match och inlérning parallellt med
erinran.

Nitverket tillimpas ocksd pa en okulomotorisk arbetsminnesuppgift utifrén en alter-
nativ hypotes om arbetsminne baserat pa snabb Hebbsk plasticitet. Det reproducerar
beteendet av andra simulationer och genererar en uppséttning experimentella prediktion-
er.

Baserat pa antagandet om en plasticitetsbegréinsad minneskapacitet och det evolu-
tiondra behovet av att maximera lagrad information vid reproduktiv alder, hérleddes
en modell av kognitivt aldrande dér inlérningshastigheten minskar pa ett optimalt sdtt.
En fortsattning av inldrningshastighetsminskningen bortom reproduktiv alder producer-
ar aldersberoende minnestérningar. Denna modell reproducerar plausibla sjilvbiografiska
minneskurvor med infantil amnesi och den sjdlvbiografiska kullen.
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Socrates: They say the cause of these variations is as follows: When
the wax in the soul of a man is deep and abundant and smooth and
properly kneaded, the images that come through the perceptions are
imprinted upon this heart of the soul — as Homer calls it in allusion
to its similarity to wax —; when this is the case, and in such men, the
imprints, being clear and of sufficient depth, are also lasting. And men
of this kind are in the first place quick to learn, and secondly they have
retentive memories, and moreover they do not interchange the imprints
of their perceptions, but they have true opinions. For the imprints are
clear and have plenty of room, so that such men quickly assign them
to their several moulds, which are called realities; and these men, then,
are called wise. Or do you not agree?

Theaetetus: Most emphatically.

Socrates: Now when the heart of anyone is shaggy (a condition which
the all-wise poet commends), or when it is unclean or of impure wax,
or very soft or hard, those whose wax is soft are quick to learn, but
forgetful, and those in whom it is hard are the reverse. But those in
whom it is shaggy and rough and stony, infected with earth or dung
which is mixed in it, receive indistinct imprints from the moulds. So
also do those whose wax is hard; for the imprints lack depth. And
imprints in soft wax are also indistinct, because they melt together and
quickly become blurred; but if besides all this they are crowded upon
one another through lack of room, in some mean little soul, they are
still more indistinct. So all these men are likely to have false opinions.
For when they see or hear or think of anything, they cannot quickly
assign things to the right imprints, but are slow about it, and because
they assign them wrongly they usually see and hear and think amiss.
These men, in turn, are accordingly said to be deceived about realities
and ignorant.

—Plato, Theatetus 194d and following (Fowler trans.)
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Chapter 1

Introduction

Memory at its most general can be defined as the ability to retain and reuse past
experienced information. It is a necessary ability for all agents that need to adapt to
a changing complex world, be they biological or artificial. Understanding the factors
that enable adaptive behaviour is both important for constructing and applying
complex artificial systems, and in deepening the understanding of biology, medicine
and psychology.

This thesis will focus on neural memory with a particular emphasis on certain
forms of human memory. The main issue is to study what memory phenomena can
be implemented within a basic neural network framework. Can different memory
systems be modelled using the same basic neural architecture? How much of the
properties of different memory systems can be explained in terms of different pa-
rameters rather than structural differences? Another issue paralleling this is the
development of a flexible building block for more complex memory models.

Memory models span the range from detailed computational neuroscience mod-
els of synapses and their internal biochemical networks over more simplified cell
models to connectionist networks and functional models of memory that contain
little or no biological detail. In moving towards higher levels of abstraction larger
systems can be studied, enabling linking to quantitative behavioural data but of-
ten they are structurally or functionally underconstrained. Detailed models on the
other hand are constrained by the rapidly increasing amount of complex biological
data, making it hard to see the forest for the trees. The combination of large voids
in our knowledge of certain parameters and phenomena and almost excessive in-
formation about other aspects makes it imperative to base exploration on simple,
robust hypotheses and models that allow directed exploration without being too
limited by lacking data.

Memory models also range from qualitative to quantitative. Many conceptual
or qualitative memory models have been proposed at varying levels of specificity
and connection to biological detail (see chapter 2 for a brief review). They have
been influential in guiding research, but have the disadvantage of often being under-



6 Chapter 1. Introduction

constrained. Quantitative modelling is necessary in order to tie models to empirical
data and generate testable predictions. It enables falsifiable theoretical constructs
as well as connecting different levels of detail.

This thesis is neither intended to describe a neurophysiological model nor a
purely functional/cognitive model. Rather, it is positioned in the intermediate
level between structural bottom-up models where memory is modelled in terms of
more or less realistic neurons and cell assemblies, and functional top-down models
where memory is modelled in terms of correlations and high-level constructs. Ideally
this kind of mid-level model enables translation and integration of observations or
theories between the levels.

Important issues that this kind of model could help explore involve: Are there
any necessary architectural differences between different memory systems such as
working memory, short-term memory and long-term memory, or can they all be
achieved within the same neural architecture? Can this architecture be consistent
with cognitive and neurobiological data? What memory effects can modulation of
parameters achieve? How can interacting simple systems produce adaptive effects?

In this thesis I will to some extent attempt to bridge the work described in
the previous thesis of Erik Fransén (Fransén, 1996) and the thesis of Anders Holst
(Holst, 1997). Fransén’s thesis deals with biophysically detailed models of cortical
memory, studying how Hebbian cell assemblies could be implemented within a
biologically realistic neural network. Holst’s thesis studies artificial neural networks
derived from Bayesian inference and their applications. This thesis attempts to use
models derived from the framework of Holst and earlier work to study memory
systems on a larger scale than would be possible with biophysical models, while
attempting to retain a reasonable level of abstraction as well as a connection to the
biologically plausible models of Fransén et al. Ideally these models should allow the
construction of more complex “networks of networks” for the study of interacting
memory systems.

The methodology here is in a sense negative. Since it is hard to prove at
this stage that the brain actually does implement a particular neural or functional
architecture, it may be worthwhile to study how simple models can demonstrate
the same properties. This is especially important in evaluating other models. A
complex model can in general fit any observed facts well by adapting its multiple
degrees of freedom, but is less satisfactory than a more parsimonious model as a
tool for qualitative understanding. If an empirical finding can be modelled by an
elaborate model, the demonstration of a less elaborate model that can replicate
the finding is a step forward. If the simpler model provides the same results as is
observed then the more complex model should be tentatively rejected according to
Occam’s razor. If the simpler model does not replicate all but a significant amount
of the empirical data, then the discrepancy between the models provides a potential
avenue of deeper understanding of what aspects of the studied system are generic
in the space of models and what aspects can be used to chose between models.

The approach here is to model memory in terms of a family of neural networks
within a probabilistic framework where learning consists of updating probability
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estimates and decisions/retrieval consist of deducing a likely state of the world
from prior information and the current, uncertain information at hand. Learning
is controlled by time constants which can be externally modulated and affect the
behaviour of the network. The statistical derivation implies a natural interpreta-
tion of memory and network behaviour in terms of inference, decision making and
confidence estimation.

This statistical framework can be viewed either as a phenomenological model of
neural activity similar to other artificial neural networks or a hypothesis of brain
information processing. This thesis does not claim that the brain is implementing
the attractor network that is studied or that the only natural interpretation of
cortical activity is as confidence estimates. Rather, it attempts to show that such
a simple model can account for a wide range of memory phenomena observed in
humans and other animals.

There is a often a trade-off between mathematical analysability and expressive-
ness in models. The framework used in this thesis is derived from a mathematically
analysable origin, but the inclusion of new assumptions and functionality makes
it relatively intractable to conventional analysis. Hence the approach used will be
more empirical than analytical.

The main contributions of this thesis are:

e A derivation and analysis of an autoassociative Bayesian confidence propaga-
tion neural network that performs as an efficient palimpsest memory.

¢ A demonstration and investigation of how learning can be controlled by a time
constant that has a more natural biological interpretation than the control
parameters of most previous palimpsest models. Modulation of this learn-
ing time constant acts as a print-now signal, with implications to emotional
modulation of memory and the isolate effect.

¢ A phenomenological model of synaptic and cellular adaptation is introduced
and shown to exhibit the same properties as more detailed and biologically
realistic models. It enables the network to visit multiple stored quasi-stable
states as part of free recall, to produce second best match to an input and to
maintain a working memory of multiple items.

¢ A model of the delayed response oculomotor task with bump states is demon-
strated, giving an alternative account for the formation of spatial working
memory.

e A model of the effects of lifespan modulation of brain plasticity, replicating
autobiographical memory curves.

1.1 Thesis structure

The basic structure of the thesis is:
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e An initial review of information from cognitive science, neuroscience and the
theory of neural networks relevant for the thesis (Chapter 2).

o A derivation and examination of the properties of the BCPNN family of neural
networks, with particular emphasis on issues of memory capacity, convergence
speed, cued and free recall (Chapter 3).

¢ An analysis of modulation of learning rate in the network and its relationship
to neuromodulation, emotional memory and the von Restorff effect (Chapter
4).

¢ An extension of the basic network to include a phenomenological model of
cellular and synaptic adaptation, enabling a more complex intrinsic dynamic
(Chapter 5).

e An application of the framework to working memory in the form of a model
of the delayed response oculomotor task (Chapter 6).

¢ An application of the framework to the issue of autobiographic learning and
lifespan changes in neuromodulation (Chapter 7).

1.2 Articles

This thesis is based on the following reports and articles:

1. A. Sandberg, A. Lansner, K.M. Petersson and O. Ekeberg, An incremental
Bayesian learning rule, NADA Tech. report TRITA-NA-P9908 1999.

2. A. Sandberg, A. Lansner, K.M. Petersson and O. Ekeberg, A Palimpsest
Memory based on an Incremental Bayesian Learning Rule, Neurocomputing
32-33 (2000) 987-994.

3. A. Sandberg, A. Lansner, K.M. Petersson, Selective Enhancement of Recall
through Plasticity Modulation in an Autoassociative Memory. Neurocomput-
ing 38-40 (2001) 867-873.

4. A. Sandberg and A. Lansner, Synaptic Depression as an Intrinsic Driver of
Reinstatement Dynamics in an Attractor Network, Neurocomputing 44-46,
June 2002, 615-622

5. A. Sandberg, A. Lansner, K.M. Petersson and O. Ekeberg, A Bayesian at-
tractor network with incremental learning Network: Comput. Neural Syst.
13 (May 2002) 179-194

6. C. Johansson, A. Sandberg and A. Lansner, A Neural Network with Hyper-
columns, ICANN 2002 International Conference, Madrid, Spain, Proceedings,
Lecture Notes in Computer Science 2415, Springer-Verlag 2002.
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7. A. Sandberg, J. Tegnér and A. Lansner, A Working Memory Model Based
on Fast Hebbian Learning. Submitted to Network: Computation in Neural
Systems.

8. A. Lansner, E. Fransén and A. Sandberg. Cell assembly dynamics in de-

tailed and abstract attractor models of cortical associative memory, Theory
in Biosciences. In press 2003.

1.3 Abbreviations and Notation
Abbreviations

ACh Acetylcholine

ANN Artificial Neural Network

BCPNN Bayesian Confidence Propagation Neural Network
CF Catastrophic Forgetting

EPSP Excitatory Postsynaptic Potential

LTD Long-Term Depression

LTM Long-term Memory

LTP Long-Term Potentiation

MTL Medial Temporal Lobe

NBC Naive Bayesian Classifier

PFC Prefrontal Cortex

PPC Posterior Parietal Cortex

STDP Spike Timing Dependent Plasticity

STM Short-term Memory

WM Working Memory
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Symbols Used

In the following log will be used to denote the natural logarithm and log, the
base-two logarithm.

For compatibility with the notation in Holst (1997) the double index (i)
notation for unit 7’ in hypercolumn ¢ will be used in chapter 3. However, being
cumbersome it will be replaced with the standard single-index notation (z;) in
subsequent chapters, where ¢ is assumed to be an index ranging over all units.

Some symbols are used with slightly different meaning in different parts of the
thesis, e.g. the synaptic weight w which is both used to denote weights in the
BCPNN memory and in other memories. In the table below are listed the sections
of the main definitions of the quantities. Only symbols used elsewhere than where
they are defined are included.

Symbol Meaning Defined in section
13 A learning pattern, the current learning pat-
tern
&p Learning pattern p
N Number of units in the network
H Number of hypercolumns in the network
% Presentation time for each pattern 3.4.3
z Number of training patterns 3.3.5
c(x) Clipping function 3.1.1
i P(z;7|x), the probability conditioned on 3.3.1
known information
044t Indicator variable representing known infor- 3.3.1
mation
Te Membrane time constant 7.5.1
T Learning time constant 3.3.6
TA Adaptation time constant 5.2
TS Learning rate decrease time constant 7.5.1
o Learning rate, 1/71, 3.3.6
hiy Support of unit 47’ 3.3.2
i Activation of unit 3’ 3.3.2
Ao Rate estimate of unit 7’ 3.3.6
Aiirj  Rate estimate of connection unit jj’ to unit 3.3.6
1’
Ao Underflow protection, intrinsic noise rate 3.3.6
i Rate estimate of adaptation for unit 47’ 5.3
i 50 Rate estimate of adaptation for connection 5.3

unit 55’ to unit s’
Vit Cellular adaptation of unit 73’ 5.3
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ﬁii’

Wit

Viit jj!

Bias of unit i’

Weight between unit j;j’ and unit i7’. Note the
difference between the usage in section 3.3.1
and section 3.3.2; when both are used the ex-
pression in 3.3.1 is denoted log-weight.
Synaptic depression/facilitation between unit
jj' and unit 4¢’

Gain of adaptation

Gain of associative projection

Gain of input projection

Print-now modulation of 7,

Modulation of isolate pattern

The set of units in the same hypercolumn as
unit ¢

Number of units in hypercolumn ¢ / number
if possible valus of attribute i

3.3.2
3.3.2

5.3

5.3
5.3
5.3
4.2
4.2

3.3.2

11
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Chapter 2

Memory and the Brain

2.1 Memory: A Cognitive Neuroscience View

2.1.1 Types of Memory

Memory has been of interest to philosophers long before it became a field of psycho-
logical and biological study. Aristotle developed a theory of mind where the senses
receive the form of sensible objects without their matter, leaving imprints in the
mental matter in the same way as a signet ring leaves imprints in wax. Memory is
seen as the persistence of sense impressions, and recall is defined as an act which
causes an imagination of an earlier impression to become an actual sensation. Rec-
ollection is governed by laws which regulate how an initial imagination associates
with other potential imaginations based on similarity, contrast or continuity (Aris-
totle, 350a,b). This was in many ways the first general model of memory, not just
an analogy like the wax and aviary analogies in Platon’s Theaetetus (Plato, 360)
where the main issue was how impressions could be stored and why erroneous re-
call was possible. The Aristotelian model expands on this, distinguishing between
an inactive storage state and an active experience as well as adding a theory of
association and of the processes accessing memory.

Despite (or perhaps because of) the elaboration of the Aristotelian memory
model the simpler model of memory as a passive warehouse was to hold sway within
psychology for nearly two millennia, and still remains a common metaphor in folk
psychology. The role of the Aristotelian model was rather to influence empirical
philosophers such as Locke outside the field of psychology.

The fundamental insight of Aristotle was that memory can be viewed as a func-
tion rather than storage; it does not consist solely of imprints of past experiences,
associations between them and the underlying physiological basis but also the pro-
cesses that enables it to affect the behaviour of the organism. As Eichenbaum and
Cohen (2001) put it, memory can be “conceived of as a fundamental property of
brain systems and a natural outcome of the brain’s various processing activities,

13
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rather than an entity stored in the brain”.

The definition of memory I will use in the thesis is the ability to retain and
reuse prior experienced information. Retrieval of an active representation is just
as important as proper storage. The active representation is necessary for mental
processing and the storage for transferring information across time. The processes
that introduce new information into the storage and activate useful representations
are necessary for memory as a function.

Phyletic Memory

Platon suggested the existence of innate memories that had no basis in previous
experience. While this theory has been criticised on philosophical and psychological
grounds, the basic architecture of the brain and mind is genetically predetermined
and this provides an advantage in dealing with a structured environment. A com-
pletely general learning system would require far more training data to cope with
an environment than one with predetermined suitable biases (Geman et al., 1992),
and without prior selection of the system to the environment there is no advantage
between different systems in general (Wolpert and Macready, 1995, 1997). Fuster
coined the term phyletic memory for the inherited basic structure of the nervous
system and default connections of the brain. In his words, it is the memory of
the species, which has been accumulated through an evolutionary learning process
(Fuster, 1995).

While memory in this sense fits with the working definition of memory I sug-
gested above, it is beyond this thesis. However, the importance of a predefined
context for each memory system or model cannot be overstated. Prior information
relevant to the general function of the whole system can be encoded in its basic
structure, and individual learning serves to improve the function beyond this by
allowing adaptation to a variable environment.

A mental ability, a brain structure or a neural network in isolation does not
make any sense or fulfil any purpose: it is only as part of an adaptive perception-
action system it gains meaning. It is through how well a particular implementation
functions in order to make this system achieve its goals that it can be judged.

Memory Systems and Their Taxonomies

The earliest theories of memory treated it as a unitary system. The main interests
of study were how learning occurred and the rules underlying association. Associ-
ation can be defined as linkage of information with other information, making the
experience or retrieval of one piece increase the likelihood of retrieval of associated
pieces.

Another early distinction was between recall and recognition. Recall is the
ability to retrieve an item that was previously learned when given an appropriate cue
(cued recall) or spontaneously (free recall). Recognition is the ability to successfully
acknowledge that a certain item has or has not appeared in previous experience.
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William James introduced a dichotomy between primary (short-term, STM) and
secondary (long-term, LTM) memory, which also represents the start of analysing
memory as a non-unitary system (James, 1890). He described primary memory as
that which is held only for a moment in our conscious mind and secondary memory
as unconscious but permanent information. Note the similarity to Aristotelian
imagination and impressions.

Empirical evidence for the short-term and long-term account emerged with ex-
periments such as the ones performed by Brown (1958) and Peterson and Peter-
son (1959), where even small amounts of information given to test subjects was
rapidly forgotten when active rehearsal was prevented. Even more convincing was
neuropsychological evidence of brain lesions causing impaired LTM but preserved
STM (Scoville and Milner, 1957) and impaired STM with preserved LTM (Shallice
and Warrington, 1970).

The evidence pointed to the existence of at least two memory systems, one with
durable long-term storage, unlimited capacity, a slow rate of acquisition and a ten-
dency to encode items according to meaning, and another with rapid dissipation and
rapid acquisition, a limited capacity and encoding sensitive to phonetic similarity
and other surface characteristics (Waughn and Norman, 1965; Baddeley, 1966b,a).
Information from the first short-term system was assumed to be consolidated into
a more permanent and robust form in the long-term system.

Sperling (1960) also showed that there appeared to exist a very short-term per-
ceptual memory, an iconic sensory store. These sensory stores were sensitive to
similar sounding or looking stimuli and had a very limited capacity and memory
span. The Atkinson and Shiffrin (1971) multi-store memory model expanded on
this into a model where input entered the short-term sensory store, where it was
available for entering into short-term memory. From short-term memory informa-
tion was in turn transferred to long-term memory through repetition, and could be
retrieved back into working memory if needed to generate response output. How-
ever, as shown by Craik and Watkins (1973) memory encoding is not directly related
to the time the information is kept in working memory. Instead the level of pro-
cessing, how much information is processed and associated, might affect encoding
by creating a richer and more durable memory trace (Craik and Lockhart, 1972;
Baddeley, 1999).

As more studies accumulated more elaborate models of the information flow
between sensory buffers, working memory and long-term memory were developed
(Baddeley and Hitch, 1974; Baddeley, 2000). As in the multi-store model sensory
information is first received in sensory stores (the visuo-spatial scratch pad and
the phonological loop). Working memory consists of these stores and a central
executive function regulating information flow and usage, which also connects to
long-term memory and other cognitive functions. Later the model has been ex-
tended with an episodic buffer, a limited capacity system that temporarily binds
together information from the other stores in a multimodal code, which the central
executive functions can manipulate (Baddeley, 2000).

Beside the fractioning of short-term memory, long-term memory was also found
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to exhibit different subcomponents. Cohen and Squire introduced the distinction
between declarative (explicit) and non-declarative (implicit or procedural) memory
(Cohen and Squire, 1980; Squire et al., 1993). Declarative memory was defined by
conscious recollection: memory content such as facts and events can be recalled
to consciousness. Non-declarative memory causes behavioural changes (such as
the acquisition of skills, habituation or priming) but the memory content remains
inaccessible (Zola-Morgan and Squire, 1993). As expressed by Tulving (1999) a
declarative memory act results in a product that can be held in mind, while non-
declarative/procedural memory acts do not. Studies in amnesic patients revealed
intact learning abilities for motor skills, classical conditioning and priming despite
lack of conscious recollection of the learning events (Cohen and Squire, 1980). Over
time declarative memory has become increasingly defined as a brain systems con-
struct (see section 2.1.2) rather than tied directly to consciousness.

Another division within declarative memory was suggested by Tulving (1972),
between episodic memory and semantic memory. Episodic memories are memories
of past experienced events. They are particular, covering a specific learning experi-
ence with strong autobiographical aspects (although the exact time of the learning
experience in relation to personal history may be hard or impossible to recall).
Semantic memory represents world-knowledge. Semantic memories contain mean-
ing and relationships between objects, people, places and concepts often without
a recallable source or autobiographical content. The relationship between episodic
and semantic memory has been debated (Graham et al., 2000). One suggestion has
been that semantic memory is the result of the merging of many episodic memories
based on their commonalities rather than their individual character (McClelland,
1994; Baddeley, 1999). However, some evidence suggests that semantic knowledge
can be acquired as one-shot learning and during impaired episodic memory (Nadel
and Moscovitch, 1998).

The richness of types of memory in the literature suggested the need for tax-
onomies. Schachter and Tulving (1994) defined memory systems based on their
psychological characteristics. A memory system is a system that is necessary for
tasks from a large class of tasks that have the same functional features, such as
working memory tasks or skill learning. Each memory system exhibits unique
functional properties, and can be distinguished from another through dissociations
such as different effects of lesions.

The Schachter and Tulving definition of memory systems in terms of observable
psychological effects led to a memory taxonomy with five major systems and 11
“subsystems”™ procedural memory (motor skills, cognitive skills, simple condition-
ing, simple associative conditioning), perceptual representation (visual word form,
auditory word form, structural description), semantic memory (spatial, relational),
primary memory (visual, auditory) and episodic memory.

Squire and Zola-Morgan (1991) proposed another taxonomy, only slightly over-
lapping with the Schachter-Tulving taxonomy. They divided memory into declar-
ative and procedural memory, with declarative memory divided into episodic and
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Figure 2.1. Memory taxonomy of Squire and Zola-Morgan (Squire and Zola-
Morgan, 1991).

semantic memory and procedural memory divided into skills, priming, simple clas-
sical conditioning and other categories (Figure 2.1).

These two taxonomies are based on psychological data, only using brain data
as confirming evidence. There is no consensus on how many memory systems exist
or along what cognitive dimensions to organise them (Eichenbaum and Cohen,
2001). Psychologically identifiable memory systems are linked to biological memory
systems in some way; the challenge to cognitive neuropsychology is to determine
the exact relationships between the behavioural /functional macroscopic description
in terms of cognition and the microscopic description in terms of synapses, neurons,
networks, brain structure and brain functions.

2.1.2 Memory Systems and Brain Systems
Declarative Long-Term Memory

The most successful demonstration of a link between a psychological memory system
and a brain system has been the link between declarative long-term memory and
the medial temporal lobe (see Zola-Morgan and Squire (1993); Eichenbaum (2000)
for reviews).

The patient known as HM is the paradigmatic case. HM underwent surgery
in 1953 to treat intractable epilepsy, in which the medial temporal lobes (MTL)
were removed bilaterally. The MTL encompasses the hippocampal formation, the
entorhinal, parahippocampal and perirhinal cortex; in HM’s case the amygdala
and adjacent cortex was also removed. After surgery HM was severely impaired in
learning new material as measured with recall and recognition tests (anterograde
amnesia). No new episodic or semantic memories could be laid down after this
event, but other forms of learning such as working memory, motor skill learning
and repetition priming were normal (Scoville and Milner, 1957; Cohen and Squire,
1980). HM’s case demonstrated that declarative memory could be dissociated from
non-declarative memory and suggested a link to the medial temporal lobe.

Other patients with focal lesions in the MTL exhibit the same anterograde
amnesia, implying that the MTL at least plays an important role in laying down
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declarative long-term memory. Since patients with anterograde amnesia have func-
tional memory for information acquired sufficiently long before the lesion, the MTL
memory system is not necessary for maintaining or recalling long-term memories of
this type.

Patients with MTL lesions also often exhibit retogerade amnesia, amnesia of the
time period before the lesion (Ribot, 1882). This amnesia can exhibit a temporal
grading, with the most remote memories less affected than more recent memories.
One interpretation of this is in terms of a gradual consolidation process where
experiences first exist as a MTL-dependent representation and then are consolidated
into a non-MTL-dependent representation (Squire and Zola-Morgan, 1991; Zola-
Morgan and Squire, 1993; Squire and Alvarez, 1995), likely in the neocortex (Fuster,
1995).

Further evidence of the role of the MTL in declarative memory have been found
through functional imaging methods such as PET and fMRI studies in humans.
The MTL shows increased activity when retrieving a less practised memory state
compared to retrieving a well practised memory (Petersson et al., 1997, 1999).
Especially notable is that a higher level of activity can be observed within the hip-
pocampus during retrieval accompanied with a conscious recollection of the learning
episode compared to merely recognising a learned item as familiar (Eldridge et al.,
2000).

Animal lesion studies have largely confirmed this evidence and narrowed down
the brain regions necessary for acquisition of memories in delay conditioning, place
learning and contextual fear conditioning (Zola-Morgan and Squire, 1993; Quillfeldt
et al., 1996; Packard and Teather, 1998). Drug infusion in specific brain areas of the
rat shows that the hippocampus and amygdala are involved in memory expression
for a few days after the learning occasion, entorhinal cortex for more than 31 days
but less than 60 days and parietal cortex (presumably the final storage of the
learned information) for more than 60 days (Quillfeldt et al., 1996). The MTL can
also be dissociated from procedural learning, as demonstrated by the differential
effects of selectively inactivating the hippocampus and caudate nucleus (Packard
and McGaugh, 1996).

The converging evidence from lesions and functional neuroimaging points to-
wards a set of structures in the MTL, particularly the hippocampus, entorhinal,
parahippocampal and perirhinal cortex, and parts of the diencephalon as being
essential for declarative long-term memory (Squire, 1992).

The MTL is a convergence area of polymodal information, well suited to form
representations of a current context which can then be consolidated. It has been
implicated in contextual learning of different kinds, such as classical context condi-
tioning (Holland and Bouton, 1999; Anagnostaras et al., 1999).

The hippocampus and related systems appear to have strong ties to navigation
in both rodents and humans (Maguire et al., 1998). In rats place cells fire when the
rat is in a particular location in the environment (O’Keefe and Dostrovsky, 1971;
Wilson and McNaughton, 1993). While it has been argued that the hippocampus is
mainly about spatial maps, there also exist cells sensitive to other features, such as
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olfactory cues (Wood et al., 1999) and cells in humans sensitive to facial expression
feature combinations (Fried et al., 1997). Hence it appears likely that this system
does represent, general cognitive maps of stimulus features.

Morris (1996) argues that having a learning system with fast plasticity (such
as the hippocampus) would enable it to do one trial learning of the unique and
random events of everyday life, while slower learning would tend to represent more
invariant or consistent features of the world. Episodic and semantic memories are
abstracted from the hippocampal recording of experience.

An important hypothesis relating to encoding of memory is MTL-dependent
consolidation through repeated reinstatement of the neocortical representations.
According to this hypothesis the MTL stores a “snapshot” or “index” of experi-
ence through fast learning, while the neocortex is a slow learner. Over time this
trace is reactivated, causing the reinstatement of the activity caused by past expe-
rience. This reactivation strengthens the neural interconnections between parts of
the representations so that eventually the neocortical memory network can support
declarative memory retrieval on its own without support from the MTL (Marr,
1971; Alvarez and Squire, 1994; McClelland, 1994; McClelland et al., 1995; Squire
and Alvarez, 1995). Different versions of this hypothesis exists, differing in the
nature of the MTL representation and how the reinstatement occurs (Squire, 1992;
Bibbig et al., 1995; Murre, 1996; Robins, 1996; McClelland and Goddard, 1997).
Neurophysiological evidence supports the view that this reinstatement occurs dur-
ing sleep or inactivity (Wilson and McNaughton, 1994; Buzsdki and Solt, 1995).

fMRI imaging of the MTL during a famous face remote memory test was tem-
porally graded (Haist et al., 2001), supporting the consolidation account. The
hippocampus proper exhibited a mixed response that was interpreted as evidence
for that it participated in consolidation for only a few years, while the entorhinal
cortex exhibited temporally graded changes extending up to 20 years.

While both episodic and semantic memories are affected in classical anterograde
amnesia, they can be dissociated in semantic dementia. Semantic dementia is a
disorder of progressive deterioration of semantic knowledge about people, objects,
facts and words that is not accompanied by declines in other cognitive skills such
as visuospatial ability, nonverbal problem solving and working memory (Graham
et al., 1999). Learning of nonverbal information can be relatively intact (Graham
et al., 1999, 2000). Semantic dementia is typically caused by atrophy of the in-
ferolateral temporal neocortex that has spared the hippocampal complex (Graham
et al., 1999). This suggests that at least some aspect of semantic memory is closely
linked to this cortical region.

Working memory

Short-term memory/working memory involves the retention or maintenance of in-
formation for short periods of time, usually linked with an ongoing behavioural task.
It is similar to declarative long-term memory in that it is associated with awareness
and mental representations, but it is short-lived and not affected by LTM lesions.
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The region most well linked to working memory tasks is the prefrontal cortex
(PFC), especially the dorsolateral PFC. Prefrontal lesions disrupt the ability to
perform tasks requiring recall over brief periods of time, while sparing the abil-
ity to perform tasks where the sensory information remains available (Jacobsen,
1935; Pribram et al., 1952; Passingham, 1975). Patients with frontal and parietal
lesions are impaired in working memory tasks but have normal declarative memory
(Shallice and Warrington, 1970; Freedman and Oscar-Berman, 1986).

Functional neuroimaging studies also show heightened activation of dorsolateral
PFC during working memory tasks as well as activation of the inferior parietal
cortex, with a possible role of the cingulate cortex for motor action (Klingberg,
1997).

Single-cell electrophysiological recordings in the prefrontal cortex and cingulate
gyrus have demonstrated neurons that sustain firing during the delays in working
memory tasks (Fuster and Alexander, 1971; Fuster et al., 1982; Funahashi et al.,
1989, 1993). The paradigmatic experiment has been the delayed response task
(Goldman-Rakic, 1995; Goldman-Rakic et al., 1999). In the oculomotor version
of this task (Funahashi et al., 1989), the location in visual space has to be re-
membered over a few seconds after which a suitable response should be generated.
Neurons with sustained delay period firing are found in a circumscribed part of
PFC with columnar units sharing sensitivity for the same visuospatial coordinates.
If the firing of a recorded neuron is not maintained throughout the delay period
the animal is likely to make an error (Funahashi et al., 1989), and the temporary
inactivation of a module of cortex results in the loss of memory for particular target
locations (Sawaguchi and Goldman-Rakic, 1991). The delay activity appears to en-
code sensory attributes of a remembered stimulus regardless of their task relevance,
suggesting that they are not solely preparation for a response (Constantinidis et al.,
2001).

There may be a separation of memory domains in the PFC, with different areas
dedicated to different contents. In monkeys the dorsolateral area around the princi-
pal sulcus and the anterior arcuate may be important for spatial working memory,
while the inferior convexity appears involved in working memory of nonspatial vi-
sual information (Goldman-Rakic et al., 1999; Undergleider et al., 1998).

Similar delay activity can be found in other cortical areas such as the parietal
lobe (spatial memory tasks) or the inferotemporal lobe (object memory tasks). It
has been suggested that the prefrontal and posterior sensory areas are connected
by cortico-cortical reciprocal connections that exhibit reverberating activity during
the delays (Fuster, 1995).

A model of working memory will be further studied in chapter 6.

Non-declarative memory

Non-declarative or procedural memory is to an extent a catch-all term for many
different memory functions and should not be expected to be a unitary brain system
but rather a collection of different systems (Willingham and Preuss, 1995).
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The basal ganglia have been suggested to be involved in motor, habit and skill
learning (Mishkin et al., 1984). Patients with Parkinson’s and Huntington’s disease
often suffer from lapses of procedural memory, without any explicit memory deficits.
However, the impairments seem to vary between different groups of patients and
tasks (Vakil and Herishanu-Naaman, 1998). Inactivation of the caudate nucleus
impairs response learning but not place learning which instead is subserved by the
hippocampus (Packard and McGaugh, 1996).

Priming, the increased probability of retrieving a recently observed memory,
may be a neocortical phenomenon. PET studies have demonstrated decreases in
activation in different cortical areas during priming tasks (Yasuno et al., 2000).
This has been interpreted as a facilitation of processing the second time a stimulus
is shown (Squire et al., 1992).

The cerebellum has been suggested as a site of motor learning (Marr, 1969;
Thach, 1996), especially for timing of motor responses and it appears to be involved
in different forms of classical conditioning (Medina et al., 2002). Another brain
structure implicated in conditioning is the amygdala. It appears tied to “emotional
memory”, particularly fear conditioning (see next section).

Modulation of Long-Term Memory

The ability to retrieve earlier experience is strongly influenced by factors at the
time of encoding in addition to retrieval-time influences.

Part of this influence is from meaning-based, context and relational processing
and factors like emotional significance and attentional allocation (for reviews see
e.g. Buckner et al. (1999); Wagner et al. (1999)). In many cases the activity observed
during encoding predicts whether subsequent retrieval attempts will be successful
(Buckner et al., 1999).

Endogenous processes activated by experience can modulate memory strength
in terms of recall probability (McGaugh, 2000). For example, emotionally arousing
(Christianson, 1992) or humorous (Schmidt, 1994) experiences are generally better
remembered than less affective experiences. Successful recognition of a task-relevant
stimulus can give rise to enhanced learning of task-irrelevant stimuli, suggesting
that there exists a reinforcement signal linked to perceived task-relevance that also
reinforces learning of other stimuli (Seitz and Watanabe, 2003).

The novelty of a stimulus also plays an important role. The von Restorff or
isolation effect consists of improved recall or recognition of an item (the isolate)
that is distinct or different from the others in a set, while the other items are less
well recalled (retroactive and proactive inhibition) (von Restorff, 1933). While this
has mainly been studied in human list recall, a similar effect has been observed in
rats (Reed and Richards, 1996) and monkeys (Parker et al., 1998).

On the neurochemical level hormones and neuromodulators can affect how
strongly experiences are retained (Martinez et al., 1991). The pharmacology of
memory enhancers generally demonstrate that drugs that stimulate the dopamine,
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noradrenaline and acetylcholine modulator systems or act as agonists have mem-
ory enhancing effects (Ennaceur and Delacour, 1987; Hasselmo. et al., 1992; Has-
selmo et al., 1996; Levin and Simon, 1998; Clark et al., 1999). Even nutrient levels
can affect the strength of memory traces (Winder and Borril, 1998; Boccia et al.,
1999), possibly by triggering the release of neuromodulators such as acetylcholine
(Ragozzino et al., 1996).

The amygdala has been implicated in many forms of emotional memory. While
originally believed to be an integral part of the MTL declarative memory system,
animal lesion studies have demonstrated that it is not necessary for declarative
memory (see Zola-Morgan and Squire (1993) for a review). Rather it appears to
act as the site of Pavlovian fear conditioning, learning associations between stimuli
and hippocampal contexts to produce fear responses (Maren and Fanselow, 1996;
Anagnostaras et al., 1999; Fanselow and LeDoux, 1999; Medina et al., 2002; Moita
et al., 2003) as well as modulating the consolidation of memory in other brain
regions (Cahill and McGaugh, 1998; McGaugh, 2000).

These mechanisms appear linked to a small number of “print-now” signals that
changes overall plasticity in a memory system in a fairly global manner, e.g. dopamine
(Wickens and Kotter, 1995).

There thus appears to exist several groups of memory modulating effects. One
group consists of plasticity-modulating influences, regulated by emotional and cog-
nitive factors. Another is intrinsic properties of the brain’s network structure mak-
ing certain types of data more likely to be retained than others due to more efficient
or orthogonal representations. Activation of larger neural networks with more ex-
tensive connections would make the traces more likely to be stimulated by a cue and
more resistant to interference, similar to the levels of processing theory of Craik
and Lockhart (1972). A better or multimodal representation of the information
would also improve storage, such as in memory arts (Patten, 1990). Many mem-
ory enhancement techniques rely on using spatial representations, which may be
stored more efficiently in the hippocampus than other representations (Nadel and
Moscovitch, 1998). A closely related group consists of attentional gating of what
and how deeply information is processed, which can be hard to disambiguate from
direct changes in plasticity (Warburton et al., 1992).

An important issue is how to distinguish these factors from each other. We will
return to the subject of models of memory modulation in chapter 4.

2.2 Memory: A Cortical View

Cognitive psychology and neuropsychology provides a top-down view of memory,
where the actual behavioural effects of memory are the most easily observable phe-
nomena and ever finer subdivisions of systems the result of a reductionistic research
program. In the end the hope is to ground these systems in the actual neurobiology
of the brain, a top-down deductive approach. The cortical neurophysiology perspec-
tive instead addresses the issues of memory in a bottom-up constructive approach
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where neural plasticity, microcircuits, global networks and the formation of repre-
sentations is seen as the physiological substrate of memory functions. The hope
here is to explain higher and higher memory functions in terms of simpler neural
correlates, eventually reaching the level of the constructs of cognitive psychology.

2.2.1 Cortical Circuitry and Modularity

The basic cortical structure appears to be relatively regular with local variations
of the same underlying modular and layering theme (Braitenberg and Schiiz, 1991;
Shepherd, 1998; Arbib et al., 1998). The neurons are distributed between distinct
cortical layers, where each layer receives and sends projections in a specific man-
ner to other cortical and subcortical sites, suggesting a different functional role
for each layer (Thomson and Bannister, 2003). The layers are similar across the
cortex although their relative size varies. The cortex consists of ~80% pyramidal
cells, a relatively homogeneous group of excitatory neurons (with some variation
between cortical layers). The remaining ~20% inhibitory interneurons are more
heterogeneous, with several subclasses of cells (Gupta et al., 2000).

Neurons in the cerebral cortex receive both thalamic afferents and extensive
horizontal recurrent connections from nearby cells and more remote cortical ar-
eas. Intracortical connections are relatively dense locally and sparse on the global
level (Palm, 1982; Gilbert et al., 1990), and horizontal connections provide up to
80% of synapses onto some pyramidal cells (LeVay and Gilbert, 1976). Superficial
pyramidal cells connect extensively to neighbouring cells. Roughly 70% of the ex-
citatory synapses on such pyramidal cells come from cells less than 0.3 mm away
(Calvin, 1995). Connections between cortical areas are extensive and in general
reciprocal (Felleman and van Essen, 1991; Scannell et al., 1995). This produces a
densely interconnected system well suited to associate information both intra- and
inter-modally.

Mountcastle introduced the concept of “cortical columns” as the basic functional
module of the neocortex based on physiological experiments with cat somatosen-
sory cortex (Mountcastle, 1957, 1998). Cells with similar functional properties were
found to be located in narrow columns 40-50 pm across comprising some 80-100
cells. This is similar to the earlier observations of de N6 (1938); de N6 (1938) of
synaptically linked chains of neurons in rodent cortex spanning the cortical layers,
which he theorised was an elementary unit of neocortex which could sustain rever-
berating activity in the form of impulses circulating along closed loops. However,
it is not yet verified that the functional columns observed by Mountcastle actually
correspond to the geometrical minicolumns of the brain (Arbib et al., 1998).

According to Mountcastle (1978) the minicolumn is the basic functional module
for input-output processing. It comprises a set of cells with heavy vertical inter-
connections and more sparse horizontal interconnections. Pericolumnar inhibition
isolates neighbouring minicolumns from each other, while they are assumed to have
specific long-range connections. While the general activity of cells belonging to the
same column is similar, different cell types differ in their responses. The variables
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represented by the minicolumns (direction, frequency, colour etc.) from different
cortical areas differ, and are determined by the nature of the thalamic input and
intracortical processing.

The functional columns appear to be organised into larger patterns. For in-
stance, minicolumns are organised in broader groups, 300-500 ym hypercolumns
consisting of 50-80 minicolumns with a common input and extensive connections
between the pyramidal and inhibitory interneurons. Long-range intracortical pro-
jections link columns with similar functional properties. Minicolumn size does not
appear to be very sensitive to brain size (Bugbee and Goldman-Rakic, 1983), but
varies between cortical areas.

Columnar organisation allows an intermittently recursive mapping of two or
more variables onto the cortical surface (Mountcastle, 1998). The canonical ex-
ample is the coding of edge orientation in the primary visual cortex (Hubel and
Wiesel, 1977), where each orientation minicolumn responds selectively to a range
of orientations and spatial frequencies (Issa et al., 2000). The hypercolumn contains
orientation columns covering all angles as well as two different ocular dominance
columns, and thus represents the local edge orientation pertinent to a given point
in visual space. A similar modular arrangement is found in blobs and in many other
cortical areas, e.g. whisker barrels in rodent barrel cortex (Purves et al., 1992) and
in auditory cortex (Imig and Adrian, 1977; Middlebrooks et al., 1980). Modular
geometry has also been found in high-level association cortex such as the entorhinal
cortex (Hevner and Wong-Riley, 1992). The exact geometry appears to be variable
between brain areas, species and possibly even individually (Adams and Horton,
2003). It seems reasonable to assume that while modularity is a common feature,
the self-organising processes bringing it about can produce many different physical
geometries but with the same basic circuitry and functional structure.

The functional role of hypercolumns is largely unknown. In the visual cortex
normalisation models propose that the total activity of all the cells within a hyper-
column is normalised, possibly by shunting inhibition via basket cells (Carandini
et al., 1997).

Collateral axons often travel a characteristic lateral distance before terminating
in a patchy way, with patch sizes coinciding with minicolumn sizes (Gilbert, 1993;
Lund et al., 1993; Schiiz, 1994; Arbib et al., 1998). Cells with the same orientation
selectivity in the primary visual cortex are often connected Hirsch and Gilbert
(1991). This suggests that connectivity is selective for minicolumns, i.e. “patchy”.
Even arborisation of afferents arriving over macroscopic distances appears to be
modular Goldman-Rakic and Schwartz (1982); Arbib et al. (1998).

From scaling and volume considerations Braitenberg finds that dividing cortical
circuitry into compartments of v/ N neurons where each neuron in a compartment
sends an axon to another compartment (and has local dense connectivity) produces
compartments with the same size as Hubel and Wiesel’s hypercolumns and fits data
on dendritic spread and white matter volume (Braitenberg, 2001; Braitenberg and
Schiiz, 1991). Perelmouter proposed a hierarchy of k levels of compartments with
Nk compartments of the next level, producing realistic volume values for k = 4
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(Braitenberg, 2001).

This kind of volume consideration is one reason to expect modularity in the
connections of the cortex. The advantages of co-localising closely related informa-
tion for normalisation and other shared operations is another. The independence
and capacity considerations in chapter 3 provides a third reason.

2.2.2 Neural Plasticity

The idea that memory is based on a cellular process where the synaptic connec-
tions between neurons is changed was initially suggested by Tanzi in 1893 and
independently by Cajal in 1894 (Fuster, 1995). While a common theme in most
psychological and neural theories of memory, it took until 1973 before a form of
synaptic change that could form a plausible basis for such memory storage was
found experimentally.

Bliss and Lgmo (1973) and Bliss and Gardner-Medwin (1973) discovered that
high frequency tetanic stimulation of afferents to hippocampal neurons caused a
subsequent steeper rise time in the excitatory postsynaptic potential, as well as
recruitment of spike activity from more cells in the population. These changes
in single impulse stimuli remained for hours after the original tetanic stimulation,
giving the name Long Term Potentiation. Further studies have characterised LTP
to a greater degree and described it in many brain areas (Baudry and Davis, 1996).

The underlying biochemical basis for LTP has been studied in great detail, see
Bliss and Collingridge (1993). The proposed underlying mechanisms involve the
combination of presynaptic input and postsynaptic depolarisation causing NMDA
receptors to open, producing further depolarisation and increased calcium influx
from voltage dependent channels as well as the NMDA receptors. The calcium in-
flux into dendritic spines induce a cascade of kinases that activate second-messenger
systems and affect the synapse, e.g. by recruiting previously inactive AMPA recep-
tors. LTP also depends upon protein synthesis and the activation of transcriptional
regulatory elements (Bailey et al., 1996; Alberini, 1999); the second messenger cas-
cade also leads to gene expression of synaptic effector proteins (Frey and Morris,
1997; Bhalla and Iyengar, 1999). Structural reorganisation tied to consolidation
may also involve proteolysis and transmembrane proteins that control cell adhesion
(Lynch, 1998).

LTP develops rapidly, typically within one minute after a stimulus train arrives,
and persists for several hours or more. It is also specific to the synapses activated
by the stimuli, and associative in that all synapses participating in input signals
during the time when the postsynaptic neuron fires are potentiated (Levy and
Steward, 1979). It hence appears to fulfil the requirements of Hebbian learning
(section 2.2.3) and may be a plausible neural implementation of it (Gustafsson and
Wigstrom, 1988; Sejnowski, 1989; Bear, 1996).

The temporal resolution of LTP was originally thought to be a few milliseconds,
which would limit its ability to bind together associations separated in time. How-
ever, “synaptic tagging” has been observed in the hippocampus, in which a stimulus
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leaves a “tag” for a few hours. During this period the arrival of another stimulus
will cause potentiation both at the synapse of that stimulus and at the synapse of
the original tagged stimulus (Frey and Morris, 1997). This enables the association
of delayed stimuli.

Another phenomenon that appears to be quite common is spike timing depen-
dent plasticity (STDP), where the exact time relationship between spikes in the
presynaptic and postsynaptic neuron can cause both potentiation when the presy-
naptic neuron fires first, and depression (LTD) when the postsynaptic neuron fires
first (Levy and Steward, 1983; Bell et al., 1997; Markram et al., 1997; Bi, 2002).
Long-term depression also occurs, a decrease of synaptic efficiency due to the fir-
ing of one but not both of the neurons (Christie et al., 1994). This is a saturable
phenomenon reversible by LTP-inducing stimulation.

These interactions may be only the first steps in a longer and more complex
neural consolidation process that stabilises long-term memory (Abel and Lattal,
2001). During this process different modulatory factors and activity can affect
the synapse for at least several hours after the learning experience (Izquierdo and
Medina, 1997). Long-term learning may be related to synaptogenesis and other
major structural changes (Ramirez-Amaya et al., 2001).

An unusual demonstration of very fast memory consolidation was described by
Gleissner et al. (1997). All activity in the left language-dominant hemisphere could
be suppressed in patients given an intracarotid injection of amobarbital. Words
given during the period of inactivation could not be recalled afterwards, while words
given one minute before the injection could be recalled. The lack of retogerade
amnesia suggests that a stable representation of the words had time to form in the
minute before the inactivation.

Proving that all or some memory is based on LTP has turned out to be complex,
since most interventions also interfere with other brain systems such as motor or
sensory functions. Significant circumstantial evidence suggests a role for LTP in
memory (Morris, 1996; Eichenbaum and Cohen, 2001). Xu et al. (1998) showed
that the stimulation-induced early-phase LTP in CA1 was rapidly and persistently
reversed by exploration of a new, non-stressful environment, while LTP expression
was not affected by exploration of familiar environments.

2.2.3 Cell Assemblies

LTP provides a mechanism where experience can shape neural networks into func-
tional units, cell assemblies. The cell assembly hypothesis of Hebb (1949) represents
an influential theoretical attempt at answering the questions of how to represent
concepts, behavioural structures and learning in neural tissue. It was introduced
before much was known about the microarchitecture of cortex and synaptic plastic-
ity. The theory has inspired much research in these areas, becoming a productive
if not uncontroversial framework (Lansner et al., 2003).

Cell assemblies are formed through experience. Hebb suggested that repeated
simultaneous stimulation of cells cause changes in the connections between them,
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making them more likely to activate each other (Hebb’s first postulate). The struc-
tural changes of learning were described as:

“When an axon of cell A is near enough to excite B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” — (Hebb, 1949, p. 62)

This form of learning has become known as Hebb’s rule or Hebbian learning. As
Hebb and others have pointed out, there are earlier references to the same idea
found in works such as James (1892), McCulloch and Pitts (1943) and von Hayek
(1952).

Donald Hebb introduced the concept of the cell assembly as the simplest repre-
sentation of an image or idea:

“It is proposed first that a repeated stimulation of specific receptors
will lead slowly to the formation and ’assembly’ of association-area cells
which can act briefly as a closed system after stimulation has ceased; this
prolongs the time during which the structural changes of learning can
occur and constitutes the simplest instance of a representative process
(image or idea).” — (Hebb, 1949, ch. 4)

This is sometimes called Hebb’s second postulate.

A cell assembly would consist of a group of cells that are connected to each other
by excitatory synapses. Through mutual excitation the cells of the assembly would
be able to continue firing after an external stimulus had activated it, implementing
an active representation through the reverberatory activity.

In this way the brain might use two separate neural mechanisms for short-
term and long-term information storage, with short-term storage based on electrical
activation and reverberation within cell assemblies and long-term memory based on
changes and growth in the synaptic connections between assemblies. Again this dual
active and passive representations correspond well with Aristotele’s “imaginations”
and “imprints” and William James’ “primary memory” and “secondary memory”. It
should be noted that short-term information storage could in addition be stored in
synapses through fast plasticity or adaptation.

Structures in the input to the brain corresponding to objects and categories
would cause the formation of corresponding cell assemblies, and these would act
as mental representations of the external objects. Connections between assemblies
could themselves be assemblies, enabling a conceptual hierarchy. Sequential ac-
tivation of assemblies could underlie association and sequential thought processes
(Hebb’s third postulate, “phase sequences”). In the end signals from assemblies
could produce motor responses, but unlike many early connectionist models this
was not emphasised.

The dense interconnections between neurons within an assembly gives it the
ability to perform pattern completion. If only a subset of neurons are activated
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(for example due to a weak or partial input) they will stimulate the remaining
neurons bringing them to firing until all of the assembly is active.

In Hebb’s model the assemblies overlap: cells can belong to several assemblies
at the same time. Connections between cells not belonging to the same assem-
bly are assumed to be inhibitory (this was a later addition to the theory (Milner,
1957; Hebb, 1959)). This causes competition/rivalry between the assemblies: if two
overlapping assemblies are activated their mutual inhibition will make one of them
decrease its activity until only one is fully active. This ensures that only one assem-
bly at a time is active and prevents activity within one assembly from spreading
to overlapping assemblies. It also disambiguates a mixed input and prevents ran-
domly activated neurons from activating assemblies if there exists one fully active
assembly.

Hebb pointed out that this hypothesis could explain phenomena observed in
Gestalt psychology such as perceptual completion and rivalry (Milner, 1957; Free-
man, 1991). Reactivation of a cell-assembly would also be a reconstructive process,
similar to memory reconstruction where gaps are filled in by general knowledge and
expectations.

The exact location of cell assemblies was not strictly specified, but Hebb specu-
lated that they consisted of cells both in the cortex and diencephalon and possibly
elsewhere. Assemblies were assumed to include few neurons compared to the whole
brain neural network, leading to a sparse coding.

Hebb’s theory was in many ways speculative and incomplete, but proved stim-
ulating to research both in synaptic plasticity, the role of early experience in per-
ceptual development, sensory deprivation and many other fields.

Many issues surrounding the neural implementation of assemblies have been
hotly debated due to its underconstrained nature. One such issue is the form of
neural activity within assemblies. In the simplest case it would either be a low firing
rate state (inactive) or a high firing rate (active). Both states would be stable until
outside influences caused a shift in activity. Milner (1957) further suggested that
inhibition could produce a graded response.

Beyond rate codes, von der Malsburg (1986) suggested that activity within an
assembly should be synchronised. In synchronous models assemblies would be con-
nected not so much by a shared high activity state as a state of shared synchronised
firing. Synchronous input would sum strongly on target neurons, which would en-
sure transmission over asynchronous input (Bressler, 1990). This coding has espe-
cially been proposed for feature binding since it avoids ambiguities of which feature
belongs to which object (von der Malsburg, 1981; Eckhorn et al., 1988; Singer et al.,
1997).

The activity of individual assemblies might also be relatively brief as they pass
through the phase sequence. Braitenberg (1984) proposed that threshold control
could act as “the pump of thoughts’, causing a currently activated cell assembly
to associate to the assembly most consistent or familiar with the present. This is
similar to the suggestion of Palm (1990) of short pulses of fixed point activation
under global threshold control.
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Analysis in attractor neural networks (see below) have shown that a symmetric
connection matrix produces fixed point attractors suitable for supporting cell as-
semblies. However, the brain may not have the exact reciprocity required in these
models. This was analysed in Wickelgren (1992), where it was shown that exact
symmetry is not necessary as long as the total number of connections in both di-
rection are equal. Similar conclusions were reached by Fransén and Lansner (1998)
with reciprocity between cortical minicolumns but not individual neurons. Also,
where there are enough feedback connections Hebbian learning enhances the sym-
metry of connections between groups of co-active cells since they are both strength-
ened by the same amount.

This brings up the issue of the location of assemblies. Are they local networks,
or are they distributed across several brain areas? Are there global assemblies
encompassing the whole brain? Wickelgren (1992) assumes assemblies to be part of
alocal cell group. Amit (1994) similarly proposes local networks, while Hebb, Fuster
as well as Fransén and Lansner assumes that assemblies extend over large cortical
areas. Eichenbaum (1993) suggests local subassemblies close to the sensory/motor
areas and disperse assemblies at higher areas.

The Wickelgren (1992) argument for locality is interesting in that it is based on
issues of connectivity. Randomly connected networks are very unlikely to contain
the “webs” of dense mutual connectivity assumed necessary for the reverberatory
aspect of cell assemblies. Random networks where connection probabilities favour
local connections are likely to have such webs. The Fransén-Lansner model on the
other hand is based on densely interconnected minicolumns with sparse neuron-
neuron connections to each other. While the average neural connectivity is sparse
and mainly local, the network itself acts as a densely connected network of mini-
columns where sets of minicolumns form the basic units of cell assemblies rather
than individual neurons. In many ways this is a variant of a small world network
(Watts and Strogatz, 1998) where a mostly local network still exhibits the same
short diameter and large interconnectedness as would be expected by a completely
randomly connected network. If the brain is not a random network but rather has
a certain measure of structure, it is possible to maintain dense “webs” that have
widely distributed parts.

Finding experimental support for cell assemblies has proven complex, since the
neurons participating in an assembly may be spread out among countless non-
participating neurons. Hence very many recording electrodes would be needed to
have a sufficiently high probability to pick up two or more member cells at the same
time (Strangman, 1996). One approach to detecting cell assemblies is to search
for dynamic shifts in correlations between cells. Cells belonging to the same cell
assembly should show correlations in their activity, and a cell belonging to several
assemblies would show different correlation patterns depending on which assembly
was active. Such changes have been observed in hippocampal cells (Sakurai, 1998).

Ensemble recordings in the hippocampus show changes after introduction to a
new environment or the return to a known environment suggestive of the cell assem-
bly account (Wilson and McNaughton, 1993). Similarly, the study of Hoffman and
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McNaughton (2002) demonstrated the appearance of correlated activity between
widely distributed neurons in a monkey during and after performing a task.

An old hypothesis of memory retrieval (again with roots in Aristotle (350a) and
James (1890)) is that retrieval of specific sensory events reactivates the cortical
regions that were active during the the encoding of the event. Wheeler et al. (2000)
demonstrated that vivid remembering of visual or auditory information causes re-
activation of subsets of sensory cortex that were activated during a separate but
corresponding perception task. Retrieval of visual words that were paired with
sounds causes the activation of auditory brain regions that were active during en-
coding, even when there is no need for the auditory information (Nyberg et al.,
2000). It thus appears likely that holding a concept active in awareness or recalling
it corresponds to reinstating at least part of the activity within the cell assem-
bly that would be activated by its sensory occurrence. This fits well with Hebb’s
predictions, including the formation of multimodal assemblies by the pairing of
stimuli.

The cell assembly theory is not the only bottom-up theory of cognition (e.g. .
(Abeles and Gerstein, 1988; Gray et al., 1989; Abeles et al., 1990; Singer et al.,
1997)) but appears to work well with the known data of synaptic plasticity, cortical
modularity and the formation of integrated networks of activity across the brain.
Modulatory substances may regulate the formation, reorganisation and dynamics
of assemblies depending on behavioural state. This can be said to be a successful
basis for a bottom-up hypothesis of how cortical memory works.

What is still lacking in this paradigm are mainly three things. One is the phyletic
background regulating afferents, efferents, initial connectivity of brain structures
and the nature of the modulatory systems. The gradual formation of perceptual
representations during development appears to be controlled by self-organising pro-
cesses that are partially learning-dependent, but also highly regulated by phyletic
factors. Without this context cell assemblies cannot link perception and action
in behaviourally relevant ways, and cannot be said to represent anything. This
background is on the other hand amenable to traditional neurophysiological study.

The second lacuna is an understanding of the temporal succession of assemblies.
This is likely linked to the issue of how sequences of experiences are recognised and
behavioural sequences performed in an adaptive manner. Many different proposals
have been made, but so far no consensus has emerged and no models can exhibit
the full range of temporal abilities of animals.

The final challenge is the link to cognitive phenomena; despite the conceptual
successes of the cortical perspective of memory we still lack an understanding of
how the different observed varieties of cognitive memory systems (e.g. episodic vs.
semantic memory, procedural vs. declarative memory) can be grounded in cell
assemblies or other cortical structures. This is what this thesis is about.
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2.3 Memory: A Neural Network View

Artificial neural network (ANN) models often bridge the gap between the cortical
perspective and the cognitive perspective, since they can model networks on the
scales that are currently hard or impossible to study experimentally. They provide
both a qualitative language to express hypotheses about memory, a potentially
quantitative bridge to experimental data and a means to make predictions and
propose new experiments.

2.3.1 Computational Memory Models

The earliest neural networks such as that proposed by McCulloch and Pitts (1943)
were more similar to networks of logical gates and stimulus-response psychology
than to biological neural networks and memory retrieval. Rosenblatt’s perceptron
(Rosenblatt, 1962) introduced learning of an input-output mapping, but associative
learning was not present.

The first truly associative neural network model was the Lernmatrix/Willshaw
model (Steinbuch, 1961; Steinbuch and Piske, 1963; Willshaw et al., 1969; Palm,
1980). The associator mapped a sparse binary input vector to an output vector
through a binary weight matrix and a threshold function similar to the one used by
McCulloch and Pitts (1943). Each element of the weight matrix can be interpreted
as a synapse between two neurons, and the conjunctive learning rule for setting the
weight as a Hebbian learning rule. By judicious threshold-setting the capacity and
robustness could be optimised even for noisy input and incomplete connectivity
(Palm, 1980, 1981; Schwenker et al., 1996; Graham and Willshaw, 1997). This
form of sparse binary hetero- or autoassociative memory inspired many strands of
memory models. One approach is represented by the Sparse Distributed Memory
model of Kanerva (1988) and its extensions.

Another field was matrix memory models (Kohonen, 1972). In these networks an
activation vector is multiplied by an association matrix to produce an association,
typically a linear mapping. In order to achieve memory storage the association
matrix had to be suitably defined. This is a general feature of distributed memory
models: the existence of an associative matrix, whose structure is molded by the
learning process to enable retrieval of stored patterns and possibly other functions.

The three main approaches to constructing the matrix were pseudoinverse, gra-
dient descent and correlation matrix methods. Of these the correlation matrix
memories have been the most important in memory models. The reason is that they
employ a local learning rule, where the update is based on information available to
a single synapse or neuron, and incremental learning, where learning modifies the
old network configuration to memorise new patterns without need to refer to earlier
patterns. The pseudoinverse and gradient descent methods require non-local infor-
mation processing and the pseudoinverse is non-incremental, making them unlikely
candidates for cortical memory; nonlocal information transfer and storage of earlier
data outside the network does not fit well with what is known or surmised about
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biological systems. Correlation matrix memories create the association matrix as
the sum of the outer product of input vectors. They are not in general optimal, but
can be trained iteratively and are based on local learning similar to the Willshaw
model. Through the introduction of nonlinearities in the response in the “Brain
State in a Box” (BSB) model of Anderson et al. (1977) the matrix memory models
evolved towards modern attractor neural networks.

Within cognitive psychology variants of matrix models continued to be devel-
oped (Murdock, 1982; Eich, 1982; Pike, 1984; Humphreys et al., 1989). These
models usually employ abstract representations that can not easily be mapped to
neurobiology, and various retrieval/decision criteria. The main thrust has been
to explain observed results in cognitive experiments, linking them more with the
cognitive than the cortical perspective of memory.

Another approach was represented by the continuum models of Wilson and
Cowan (1973) of neural sheets, where activity was described as partial differential
equations. This strand of exploration were later to become relevant to models
of spatially localised states in visual cortex hypercolumns and working memory
(Amari, 1977a; Ben-Yishai et al., 1995).

In parallel with the studies of matrix memories neural network models of mem-
ory developed during the 70’s and early 80’s (Little and Shaw, 1975; Grossberg,
1976). Marr (1971) approached biology closely, examining the computational abil-
ities of the hippocampus and suggesting a model of hippocampal function.

The start of the second wave of connectionism was marked by the publication
of the volume “Parallel models of associative memory” by Hinton and Anderson
(1981) and the appearance of the Hopfield (1982) model (an asynchronous version
of the Little (1974) model) which stimulated research into the statistical physics
of attractor neural networks (Hertz et al., 1991). These developments gave access
to a highly interdisciplinary toolkit for the study of models of neural and synaptic
interactions and increased interest in constructive models of cognition that were
more closely linked with cortical architecture. The developing field of memory
models branched out to encompass a wide spectrum of model abstraction levels
and scales of the studied memory systems (Figure 2.2).

At the cellular and synaptic level various detailed models of relevant processes
can be found. These include models of synaptic biochemical networks linked to
transmission and plasticity, the effects of backpropagating action potentials and
STDP. There is a continuum of more reduced models of synaptic plasticity ranging
from phenomenological descriptions of STDP and the BCM rule to mathematical
simplifications such as the Hopfield learning rule.

Above the synaptic models we find elaborate single cell compartmental models
like the Purkinje cell model of De Schutter (1994) and models of the interactions
of small networks of such neurons. As larger and larger networks are studied,
the models by necessity become more simplified and abstract due to computational
demands. The largest biophysical simulations of spinal, neocortical or hippocampal
networks involve tens of thousands of neurons with few compartments and millions
of synapses (Hammarlund and Ekeberg, 1998; Kozlov et al., 2003).
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Figure 2.2. Rough overview of memory models, plotted in terms of model ab-
straction (from attempts of biological emulation to mathematical abstraction)
and the scale of the studied systems.

On the abstract side there is a flourishing field of study of microcircuits and
larger networks, mostly dominated by attractor neural networks used as generic
models of memory or as models of particular brain systems, such as the visual
cortex, area MT, IT or CA3. The level of abstraction varies from spiking neuron
models to simple rate coding elements. Studies of connectivity constraints can also
be found here, where graph theory is used to analyse the representational abilities
or capacities of networks. At largest scales networks of networks are studied, where
the interactions between simpler participating networks produce memory-related
phenomena.

The Parallel Distributed Processing framework can be seen as the manifest of
more abstract connectionist models (Rumelhart et al., 1986) that still retain some
architectural link with neural systems but have abstracted away much detail of
neurons and synapses. Beyond these in abstraction are the psychological matrix
models (see above) and other cognitive memory models that do not map their dy-
namics onto any neurophysiological correlates but rather aim at a phenomenological
understanding of cognitive functionality.

While one goal of computational memory modelling can be said to be to cover
the entire map, different regions provide different forms of knowledge. Even fairly
small biologically realistic models show very complex dynamics depending on little
understood or uncertain biological parameters, making generalisation hard. While
realistic modelling of small subsystems can constrain the parameters and suggest
functions, there is usually a need for feedback from reduced models and data on
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larger scales to formulate functional hypotheses. More abstract and conceptual
models help support this process, by concentrating on the functional issues and their
internal constraints. By formulating more abstract high-level models functional
ideas can be tested, and if found worthwhile compared to increasingly detailed
models. These abstract models are also easier to grasp conceptually than detailed
ones, thus promoting communication between different disciplines.

2.3.2 Attractor Neural Networks

Auto-associative attractor neural networks, from the early binary associative mem-
ories and the Hopfield net to networks of spiking neurons, have been proposed as
models for biological associative memory (Willshaw et al., 1969; Hopfield, 1982;
Amit, 1989, 1994). They can be regarded as formalisations of Hebb’s original ideas
of how synaptic plasticity could produce the emergence of cell assemblies (Hebb,
1949). A number of psychological memory and Gestalt perception phenomena have
been modelled based on such networks, as well as various models of psychiatric dis-
orders (Freeman, 1991; Quinlan, 1991; Ruppin and Yeshurun, 1991; Ruppin, 1995).

The Little-Hopfield network (Hopfield, 1982) has in many ways become the
Drosophila melanogaster of attractor neural networks, a simple model that can
easily be simulated, analysed, modified and extended. The memory is trained
with a set of patterns {¢} where each pattern &7 is a vector with bipolar compo-
nents £’ € {—1,1}. These are added together using an outer product learning rule
wi; =), & €7 into a weight matrix (the “mnemonic” equation in the terminology of
Caianiello (1961)). An activity state x is updated by the rule z; < sign(3_; w;;x;)
either asynchronously or synchronously (the “neuronic” equation). The basic frame-
work can be extended to continuous time and activation (Hopfield, 1984), binary
rather than bipolar patterns, sparse activity and more elaborate learning rules (see
section 3.1.1).

A fruitful concept related to the physical interpretation of the Hopfield model
is the energy function. The energy function (or Lyapunov function) is defined as
a state function that is bounded below and always decreases as the network state
evolves according to the neuronic equation (Hopfield, 1982; Cohen and Grossberg,
1983). While mainly technically useful for proving the stability and statistical
properties of states, it has also helped conceptualise differences between different
memory states (see below).

Attractor neural networks have in general held a similar interpretation of the
neural activity state as “primary memory” or working memory, and the weight
matrix as long-term memory (Amit, 1994). By uncoupling the neuronic from the
mnemonic update equations (“the adiabatic learning hypothesis”) analysis can be
simplified (Caianiello, 1961, 1989). However, recent models are exploring non-
adiabatic issues where the separation in time scales between learning and neural
activity has been blurred, such as synaptic adaptation models (Tsodyks et al., 1998)
or the working memory model of chapter 6.
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Each stored memory in an attractor network corresponds to an attractor state
of activity which usually is identical or close to the original activity imposed by the
learning experience. This would correspond to an active cell assembly. Activity
states similar to the attractor state will converge towards it, producing pattern
completion and noise removal. Cued recall in an attractor model can be defined as
successful when an initial cue state evolves into a state in the neighbourhood of the
stored memory nearest to the cue (Ruppin and Yeshurun, 1991).

The volume of the state space that is attracted to a certain attractor state is
called its basin of attraction. In many attractor network models an important issue
is the presence of spurious states, i.e. attractor states that do not correspond to
stored memories (Amit et al., 1985; Amit, 1989). Such states emerge due to overlaps
between stored patterns, and since the number of potential spurious states increase
fast with the number of stored patterns they decrease the size of the basins of
attraction of the desired memory states and eventually overwhelm them (see section
3.1.1). The probability of ending up in a memory state from a random initial state
will decrease as the volume of state space occupied by basins of attraction around
spurious states increases.

Recognition can be implemented in an attractor network as the detection of
whether the rate of change of activity of the network units becomes lower than
some threshold within a certain time of the presentation (Hopfield, 1982; Ruppin
and Yeshurun, 1991). Non-memory stable states in general have higher energy and
smaller basins of attraction than memory states (Amit et al., 1985; Amit, 1989) and
convergence takes longer time (Ruppin and Yeshurun, 1991; Tanaka and Yamada,
1993). The energy of states can hence be seen as a possible measure of memory
trace strength.

It should be noted that there exists a great deal of terminological confusion
about the meaning of incremental learning (Sarle, 2002). In the following I will
use it in the same sense as Storkey (1999) to mean on-line learning: each input
pattern is discarded after it has been processed and the weights been updated.
This is somewhat different from the suggestion of (Sarle, 2002), where incremental
learning denotes updating weights based on one pattern at a time but includes the
possibility of multiple repetitions of the pattern set as part of iterative convergence
to a final weight matrix (as in the backpropagation rule).

2.3.3 Biologically Inspired Attractor Memory Models

The recurrent architecture of attractor networks corresponds to the large-scale as
well as the local patterns of connectivity of the cerebral cortex discussed in sec-
tion 2.2.1. There one finds a local and medium-range horizontal network as well as
long-range feed-forward, feed-back and lateral connectivity between cortical areas
(Gilbert and Wiesel, 1989; Shepherd, 1998). The former can be seen as connec-
tions within the same network or within a module of the network, the latter as
connections between larger, less strongly coupled networks.
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One of the earliest applications of neural networks to memory was attempts to
test the Hebbian theory by simulating cell assemblies (see (Fransén, 1996, p. 14-15)
for a brief review). The earliest attempts of Rochester et al. (1956) using simple
spiking neurons with modifiable synapses did not produce assemblies, while contin-
uous output functions enabled assembly formation. Later models moved towards
more biologically plausible cell models (MacGregor and Palasek, 1974; MacGregor
and McMullen, 1978), where issues such as spike synchronisation and the problem
of achieving satisfactory after-activity were studied. Later simulations have demon-
strated that after-activity could be achieved by using pyramidal cells rather than
motor neurons (Lansner, 1982; Fransén and Lansner, 1990; Lansner and Fransén,
1992).

Networks of cortical pyramidal and basket cells can perform well as an attrac-
tor network (Hasselmo. et al., 1992; Haberly and Bower, 1989; Amit and Brunel,
1995; Fransén and Lansner, 1998). Specifically relevant for this thesis, a network
using the counting Bayesian learning rule (Lansner and Ekeberg, 1989) (discussed
in next chapter) operates as an attractor neural network when implemented with
biologically detailed compartmental model neurons with cortical minicolumns as its
functional units (Fransén and Lansner, 1998). Moreover it has dense local connec-
tivity that with sparse long-range connectivity, and when scaling up this network
model to a patch of 8x8 mm cortex one obtains cell counts and connectivity pat-
terns (including EPSP and IPSP amplitudes) compatible with experimental data
on cortical microarchitecture.

One problem for the early assembly models was the saturation of the activity due
to self-excitation of an assembly/attractor state, leading to unphysiological firing
rates Amit and Tsodyks (1991a,b). By local inhibition (Amit and Brunel, 1997b) or
synaptic saturation and slow NMDA kinetics (Fransén and Lansner, 1995; Tegnér
et al., 2002) this can be ameliorated.

Neuromodulation is another factor that has been extensively studied, especially
in terms of signal-to-noise ratio and plasticity gating (Hasselmo. et al., 1992; Has-
selmo et al., 1996, 1997; Brunel and Wang, 2001), as well as the regulation of
network after-activity (Lansner and Fransén, 1992; Fransén and Lansner, 1995).

Attractor networks have also been extended beyond discrete attractors to handle
parametric storage of stimuli (Seung et al., 2000). An important family consists
of ring attractors where the activity is a spatially localised bump (Amari, 1977a),
originally proposed as a model of the visual hypercolumn (Ben-Yishai et al., 1995;
Hansel and Sompolinsky, 1996) but also used as a model of both head orientation
(Skaggs et al., 1995; Redish et al., 1996; Zhang, 1996) and working memory (Wilson
and Cowan, 1973; Amit and Brunel, 1997b; Camperi and Wang, 1998).

Attractor working memory models have explored the interplay between neu-
ral parameters and network performance in simulations of the delayed oculomotor
response task (Camperi and Wang, 1998; Durstewitz et al., 2000; Compte et al.,
2000; Wang, 2001; Laing and Chow, 2001; Tegnér et al., 2002), which will be further
studied in chapter 6.
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2.3.4 Memory Models and this Thesis

The perspectives represented in this necessarily brief and incomplete review serve
as a backdrop to the models of this thesis.

In terms of memory systems and cognitive functions I will in the following
mainly focus on declarative memory in the form of semantic and episodic long-
term memory and working memory. Models of non-declarative memory will be
discussed briefly in the final chapter.

This thesis is focused on attractor neural network memories with point-like
attractor states. Real memories certainly involve temporal sequence learning, a
far more complex issue. It is likely that the general dynamical rules applicable to
attractor memories with quasi-stable attractors are applicable to memories where
the stored states represent or are themselves temporal sequences.

The models used here are rate coded and the activity is assumed to be sparse
and modular. Spiking models are assumed to have similar basic dynamics with
additional complexities such as spike synchronisation, which may add further func-
tionality. As perceptual information is processed in the primary and secondary
sensory areas, it is decorrelated and becomes sparsely encoded. This means that
the input to the models will not in general correspond to a primary sensory input,
but rather to the distributed representations of association cortex. The models
also mirror ideas of cortical modularity, with units corresponding to minicolumns
rather than neurons and groups of units bound together into hypercolumns of nor-
malised total activity containing a full set of the different features represented by
the included minicolumns.

The learning rule is a functional model of synaptic plasticity, treating it as a
statistical measure of correlation similar to the ideas of Hebbian learning. Neural
and synaptic adaptation processes are modelled in an equally abstract form.

The complex details of synaptic consolidation (the transformation of plastic
changes from an early and unstable form to a late robust form) will not be modelled.
The assumption is that in a network where individual connections correspond to
groups of synapses connecting e.g. cortical minicolumns rather than to individual
synapses between cells such details will be averaged out.
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Chapter 3

Bayesian Confidence Propagation
Neural Networks (BCPNN)

3.1 Introduction

In contrast to the arranged learning situation often faced by artificial neural net-
works, real world learning presents a next to unlimited number of learning examples,
potentially surpassing the storage capacity of the learner by orders of magnitude.
An additional complication is that the world may be non-stationary, partly due
to the changing behaviour of the system and its interaction with the environment.
In general, it is essential for a capacity limited real world learning system to give
priority to the retention of recent information of a kind that is relevant to its oper-
ation. Several different time-scales may be involved, as in for example short-term
and long-term memory. These are fundamental constraints for existing biological
learning and memory systems and are also critical for advanced artificial learning
systems.

This chapter will deal with the derivation and properties of the recurrent incre-
mental Bayesian Confidence Propagation Neural Network (BCPNN), comparing it
with other neural networks and memory models. Auto-associative attractor ANNs
are an important class of learning systems since they both formalise the ideas of
Hebbian cell assemblies and act as neurophysiological models on different levels of
abstraction. Hence issues of their learning capacity, representational capability and
dynamics have direct bearing on brain theory.

Especially the issue of catastrophic forgetting (CF) appears relevant, since it is
not observed in biological memories but standard correlation based learning rules
for attractor ANNs suffer from CF. As more and more patterns are presented to the
network the ability to recall all the patterns will start to decline. If enough patterns
are presented the network will become unable to retrieve any of the stored patterns,
often in an abrupt manner (Amit et al., 1985; Amit, 1989; French, 1999). The reason
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is that the total storage capacity is finite (proportional to number of synapses,
(Amari, 1977b)), and beyond a certain point new information has to overwrite old
information. But the most common learning rules such as the Hopfield learning rule
or the summing BCPNN learning rule (section 3.3.5) does not distinguish between
new and old information, causing all memories to interfere with each other equally.
As the interference level rises, all patterns will be disrupted at nearly the same
time. CF is a variant of the stability-plasticity dilemma, a general problem in
learning systems: how to design a system that is both sensitive to new input but
not disrupted by it (Grossberg, 1982, 1987).

3.1.1 Palimpsest Memories

To cope with the problem of catastrophic forgetting Nadal, Toulouse and Changeaux
(Nadal et al., 1986) proposed a so called “marginalist” learning paradigm where the
acquisition intensity is tuned to the present level of crosstalk “noise” from other
patterns. The learning rule is equivalent to an exponential increase in the weight
changes w;;(t) = wi;(t — 1) + AePt¢l¢! for the Hopfield network. This makes the
most recently learned pattern the most stable; new patterns are stored on top
of older ones, which are gradually overwritten and become inaccessible, a so-called
“palimpsest memory”!. The network will remember well the p most recent patterns,
where p is the palimpsest capacity (Storkey, 1999).

Another smoothly forgetting learning scheme is “learning within bounds” (orig-
inally suggested by Hopfield (Hopfield, 1982) and discussed in Nadal et al. (1986);
Parisi (1986)), where the connection weights w;; are bounded —A < w;; < A. The
learning rule for training patterns £ is

wi;(t) =¢ (wij(t —-1)+ %)

where N is the network size and c is a clipping function

—A < -A
clx)=qx lz] < A (3.1)
A A<z

For high values of A CF occurs, for low values the network remembers only the last
pattern. The optimal capacity 0.05N is reached for A = 0.4 (Parisi, 1986; Bonnaz,
1997). This implies a decrease in storage capacity from 0.137N of the standard
Hebbian rule; total capacity has been sacrificed for long term stability. It can be
shown that all learning rules of the Hopfield network in the general form

wij(t) =Y w(k)& €™
k=0

! Palimpsest: writing material (such as parchment) used one or more times after earlier writing
has been erased. From Greek palimpsestos, “scraped again”.
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with a time dependent learning rate r(k) satisfying [;° x*(u)du = 1 have less
capacity than the original Hopfield rule (Mezard et al., 1986).

More recently a higher capacity learning rule has been introduced that exhibits
palimpsest properties (Storkey and Valabregue, 1999; Storkey, 1999). It is based
on exploiting local information in order to make a first-order approximation to the
pseudo-inverse that is local and incremental (Storkey and Valabregue, 1997):

wi(t) = wig(t — 1) + (6465 — €ty () — ha(t)€)]

where
N
hi(t) = Zwik(t - l)fltc
k=1

is the local fields. This rule exhibits a capacity greater than 0.25N, greater than
the other palimpsest rules.

It should be noted that forgetting within palimpsest memories is an active pro-
cess due to the arrival of new information, rather than the decay of earlier infor-
mation (Nadal et al., 1986). However, the distinction is not always clear. For
example, the exponential strengthening of acquisition intensity in the marginalist
learning rule can be re-interpreted as a constant acquisition intensity in a network
where weights decline at a similar rate w;;(t) = Awi;(t — 1) + (e/N)EFEE] where
A= (1+¢€2/N)"/? and ¢ is a constant (Mezard et al., 1986). Similarly, a scheme
with weights decaying over time where the rate of decay depends on the presence
of new information so that no decay occurs in the absence of new learning would
exhibit palimpsest properties.

One group of approaches to the stability-plasticity dilemma involve networks
that are extended by new neurons when needed (Grossberg, 1976; Carpenter and
Grossberg, 1987; Hamker, 2001). This approach avoids CF by increasing capacity
rather than removing old memories. While originally highly speculative from a
biological point of view, the recent findings that neurogenesis does occur in the adult
brain (Eriksson et al., 1998; Gage, 2002) and even have an influence on memory
(Shors et al., 2001) does make this approach less biologically implausible. However,
the timescale of neurogenesis (days) is far longer than most learning timescales,
suggesting that introduction of new neurons might at most be important for long-
term memory and consolidation.

Unlearning theories approach the dilemma by adding active mechanisms of re-
moving spurious states and unwanted information. By allowing the network to
converge from random initial states to attractor states (which are likely spurious in
a heavily loaded network) and then unlearning them using negative Hebbian learn-
ing w;;(t + 1) = w;;(t) — nz;z; spurious states can be removed and the capacity
increased (van Hemmen, 1997). This has been a suggested reason for dream sleep
(Crick and Mitchison, 1983). The net effect is palimpsest-like, as old memories are
occasionally unlearned and gradually weaken. There are conflicting reports on the
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capacity; Christos (1996) claims a capacity of 0.05N while van Hemmen (1997)
claims =~ 0.5V.

Geszti and Pazmandi (1987) points out that the energy of learned attractor
states in a palimpsest memory decrease significantly as they grow older. This is
accompanied with a fast decrease of the probability of convergence to the states from
random initial conditions. Their suggestion is that dream sleep consists of random
activation and relearning of patterns, which would favour recent, strongly learned
patterns and eliminate weak incidental memories. This would act as a filter for the
information to be transferred from medium-term memory to long-term memory.

These unlearning theories relate to the adaptation model in chapter 5 and the
experiments with free recall in this and the following chapter.

3.2 BCPNN

A neural network architecture and learning rule derived from Bayes’ rule (Bayes,
1958), the Bayesian Confidence Propagation Neural Network (BCPNN), has previ-
ously been developed (Kononenko, 1989; Lansner and Ekeberg, 1987, 1989; Lansner
and Holst, 1996; Holst, 1997). It employs a Hebbian learning rule that reinforces
connections between simultaneously active units and weakens or makes connections
inhibitory between anti-correlated units. This learning rule is based on a probabilis-
tic view of learning and retrieval, with input and output unit activities representing
confidence of feature detection and posterior probabilities of outcomes, respectively.
The connection strengths are based on the probabilities of the units firing together,
estimated by counting co-occurrences in the training data.

Originally it was applied as a feed-forward network, used for classification tasks
(Holst, 1997) and data mining (Orre, 1998). When applied to a recurrent attrac-
tor network this learning rule gives a symmetric weight matrix, allowing for fixed
point attractor dynamics. It also generates a proper balance between excitation
and inhibition, avoiding the need for external means of threshold regulation. The
update of the weights in the network resembles what has been proposed as rules
for biological synaptic plasticity (Levy and Desmond, 1985; Wahlgren and Lansner,
2001).

It should be noted that the type of Bayesian neural network studied here differs
from e.g. those proposed by MacKay (MacKay, 1995) and Sommer and Dayan
(Sommer and Dayan, 1998). In MacKay’s approach the network is seen as a model
of the data and the learning dynamics of the network as an inference of the most
likely parameters for approximating the data. Sommer and Dayan study how a
Bayesian treatment of noisy initial patterns and weight matrices naturally leads to
an iterative retrieval strategy.

The most important difference between our approach and both of the above
mentioned ones is that in BCPNN unit activations have a direct interpretation as
confidence estimates of attribute values rather than intermediate results in a func-
tion approximations or ordinary network states. The way in which we use learning
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to estimate the parameters of our model is also quite different from MacKay’s way
of doing this, as our weights are directly expressed in terms of probability estimates
based on training data. BCPNN is more closely related to methods of Bayesian
abduction used in AI (Charniak and McDermott, 1985) and the Bayesian neural
network model proposed by Kononenko (Kononenko, 1989).

In this chapter, we demonstrate that by estimating the probabilities underlying
network biases and weights by moving averages instead of counters as in the previ-
ous versions, it is possible to derive a continuous, real-time Bayesian learning rule
with the properties of a palimpsest memory. The forgetfulness of the network can
conveniently be regulated by the time constant of the moving averages. We evaluate
this learning rule in the context of long-term and short-term memory properties of
an attractor network with some biologically plausible elements. The consequences
of a time dependent energy landscape in terms of convergence speed and plasticity
modulation are also investigated.

3.3 Heuristic Derivation of Network Architecture
and Learning Rule

The Bayesian Confidence Propagation Neural Network is based on an update rule
heuristically derived from Bayes rule and the naive Bayesian classifier (NBC) (Good,
1950).

3.3.1 Naive Bayesian Classifier BCPNN

We start with the NBC, calculating the probabilities of the attributes y; given a set
x of observed occurences of attributes x;. Both are assumed to be discrete, and the
z; are assumed to be independent (P(z1,...,z,) =[], P(z;)) and conditionally
independent given y; (P(z1,...,znly;) = [/, P(zily;)). These independence
assumptions are used for the derivation but will weakened in the network.

Using Bayes’ rule we get

m; = Plyilx) = P(y;) [ | M = P(y;) H M

i=1

This can be extended to the case where some information is not known. Suppose
we are given completely known observations z; when i € K C {1,...,n} and have
no information about the attributes xy when k € {1,...,n} — K, then for a NBC

= Pl € )= o) [T P

e K

(3.2)
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This can be put in the form of a sum of logarithms

log m; = log P(y;)+ ) _ log [M} = log P(y;) +i 01 log {M]

TPy Pa) P(y;)P(a:)
(3.3)
o . 1 ieK . )
where the indicator variable o; = 0 idK = Ik (i) represents whether there is
i

information about a feature i or not.
This can be implemented as a single layer feedforward neural network, with

input layer activations o;, weights w;; = log {%} and biases §; = log P(y;).
In this way the single layer feed-forward neural network calculates posterior prob-

abilities 7; given the input attributes using an exponential transfer function.

3.3.2 Discrete Valued Attribute Network

If discrete attribute values are represented using indicator variables, a modular
structure of the BCPNN follows. Continuous valued attributes can be interval
coded, a coding principle abundant in the nervous system. One classical example
is the coding of edge orientation in the primary visual cortex (Hubel and Wiesel,
1977), where each orientation minicolumn responds selectively to an interval of
orientations. The orientation hypercolumn contains orientation columns covering
all angles, and thus represents the local edge orientation pertinent to a given point
in visual space. By analogy with this possibly generic cortical structure we have
referred to our network model as having a hypercolumnar structure. It should be
noted that one BCPNN unit maps naturally to a minicolumn rather than to an
individual neuron.

Suppose that each attribute ¢ can take M; different values, and that we treat the
observation of a given value of a given attribute as a new binary attribute marked
with double indices, the first indicating the attribute and the second the particular
value. Making the necessary labelings in formula 3.2 we get

P(yjj wik)
T = Ply;;) = \Yggthik)
" " 11;[( P(y; ) P(wik)

where for each attribute ¢ € {1,...,n} a unique value z;; is known, where k €
{1,...,M;}. Similarly it follows that

n M;

y]]’ ) :L'u
Pl 112 50,55y %

i=114=1 y]] Z‘”)

with indicators 0;;; = 1 if i/ = k and zero otherwise.
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If we consider the attributes X; as stochastic variables with values {x;1, ...,z }y
which are explicitly represented in the network, we may view ox, (z;) := 0;+ as a
degenerate probability ox, () = 0x,, (2 ) which is zero for all z;; except for the
known value ;. If we now generalise and replace ox, with a general probability
Px, we get

n M;
y]]’a-ru
i = P(y; S5 Pxi (T
L2 B e P )
n M;
- ~ Plyjjr, wii
lOg(Tf‘jj/) = logP(yjj/) —I—Zlog Z ( 7J ) PX'L (-rii’)

P(yjj ) P(wiir)

i=1 /=1

If the outcomes z;;; of different attributes are independent of each other when
conditioned on X, 7;; will be the expectation of 7;; given the input Xj.

The corresponding network now has a modular structure. The units ' in
the network, where i’ € {1,..., M;}, explicitly representing the values x;;» of X;
may be viewed as a hypercolumn as discussed above. By definition the units of a
hypercolumn ¢ have a normalised total activity Zi\,ﬁl Px, (x) = 1.

These procedures estimate the probability of y;;; given uncertain information
related to the x;;. In this case the uncertainty of the attribute is reflected in the
probability Py, (x;) which is the input to the network.

Transforming these equations to the network setting yields

N M;
hjjr = Bjjr + Z log <Z wii 550 Px, (xiz'/)) (3.4)

where h ;s is the support of unit jj. We make the identifications:

Bjjr = log(P(yj5)) (3.5)
P(ii,y55r)

Wiirjj = o I 3.6

M Pl ) Plyjyr) (0

where 3;; is the bias term and w;yj; is the weight. ;v = f(hj;) = "7’ can

be identified as the output of unit jj’, representing the confidence (heuristic or
approximate probability) that attribute j has value j’ given the current context.

Since the independence assumption is often only approximately fulfilled and we
deal with approximations of probabilities, it is motivated to normalise the output
within each hypercolumn:

iy = f(hyy) = 7 (3.7)
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3.3.3 Recurrent BCPNN

Now, since both the input and the output of the network represent probabilities
this opens up for the possibility of feeding the output back into the network as
input creating a fully recurrent network architecture, which can work as an autoas-
sociative memory. The currently observed probability Px,(x;;/) is used as an initial
approximation of the true probability of X;;/, and used to calculate a posterior
probability as a better approximation. This is then fed back and the process is
iterated until a stable state is reached. This represents a heuristically estimated
probability closest to the observed data and consistent with the already acquired
knowledge, that is prior information represented by the learning parameters (;;/
and w;yj;-. It can be regarded as a decision on the likeliest state of the world.

It should be noted that if the independence assumptions used in the derivation
hold exactly the weights will become w;;/;;; = 1, corresponding to unconnected
units.

In the recurrent setting activations in the network can be updated either dis-
cretely or continuously (observe that the y,;; are now incorporated among the
x;i7). In the discrete case, 7, (t + 1) is calculated from 7,/ (t), or equivalently, the
hjj (t + 1) from h;y (t) using one iteration of the update rule:

N M;
hjj(t+1) = B + Z log (Z Wi o f (Riir (0))

In the continuous case h;j/(t) is updated according to a differential equation,
making the approach towards an attractor state continuous.

dh;; (t) al -
e = Bjj + Zlog Zwii’jj’f(hii’ )] — hjj(t) (3.8)

where 7, is the “membrane time constant” of each unit.

The network is typically used with a training mode where the weights are set
and a retrieval mode where inferences are made. Input to the network is introduced
by clamping the activation of the relevant units (representing known events or
attributes). As the network is updated the activation spreads, creating a posteriori
beliefs of other attribute values.

The presence of an energy or Lyapunov function in Hopfield networks guarantees
convergence to a fixed point attractor (Hopfield, 1982; Cohen and Grossberg, 1983).
It is easy to show that for a recurrent BCPNN without hypercolumns there exists
an energy function

,J %

that always decreases over time since the weight matrix is symmetric and hence the
iteration converges towards a stable attractor state. Unfortunately the form of 3.8
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is not amenable to apply the Cohen-Grossberg theorem. Nevertheless the dynamics
of the hypercolumn network does not appear to be fundamentally different and does
not converge to any limit cycles or strange attractors.

3.3.4 The Prior State

If the activities correspond to the prior probabilities of features, #;;; = P(x;) and
hiir = log(P(z;i/))), the network state is in a fixed point:

dhd a = log(P(xjj:)) + Zlog (Z P mz”/ o )P(x”/)> ~ ot

iin) Pz
(3.10)

(Z Plwiv, zi) )> (3.11)

” P(xj50)

N

D o

> o ( e ZP Tiir, Tjjr ) (3.12)
v ’ ,

Z [ log(P(zj;1)) + log <Z P(Iiz‘u%‘j')ﬂ (3.13)

But the sum of P(zy,x;; ) across hypercolumn i is P(x;; ) since the hypercolumn
covers all possible combinations. This reduces the above to

N
dhiljz;(t) = [Flog(P(a;)) +log(P(x;;))] =0 (3.14)

%

Te

and we see that the network is in a fixed point.
The Jacobian matrix of the network update equations in this point is

P(wir, w550)

Plo) (3.15)

Jiirjjr = —0iwjjr +
This matrix has at least one eigenvalue with positive real part since not all deter-
minants associated with all upper-left submatrices are negative (the upper 2 x 2
determinant is either positive or zero since P(x;ir, ;) < P(x;)), which is neces-
sary for negative definiteness. Hence this fixed point is unstable, and the network
will when perturbed move its state to some other fixed point.

In the above analysis the effect of the normalisation was ignored. However, the
only way it could change the stability condition of the point is if eigenvectors of the
Jacobian of the normalisation operator with negative eigenvalues exactly coincide
with the positive-value eigenvectors of the above Jacobian. But since this Jacobian
depends on arbitrary probabilities, this is not the generic case.
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3.3.5 Summing Bayesian Learning

To derive the connection weights, estimates of the probabilities P(x;;/) and P(zy, 557)
are made. If the training data is already present as z observed pattern vectors £

with component events £, the estimates can be easily calculated by counting the
number of occurrences of events ii’, 75 and 7’7’ in the training data. This con-
stitutes the summing form of the BCPNN learning rule used earlier (Lansner and

Ekeberg, 1989; Lansner and Holst, 1996).

4 4
,} : P f§ : P ¢P
Cijr = §jj/ Cii’jj = §ii/§jj/
p=1 p=1

giving probability estimates p; = c;iv /2 and Psiv ;50 = ciirjj0 /2. Since logarithms of
these values will be used, special care has to be taken with counters that are zero.
In practice the logarithm of zero is replaced with a number that is more negative
than all the other values of biases or weights in the network (Holst, 1997).

The weights are set to

1 Cii/:OOerj/:()Ori:j

wiir gy =4 1/z Ciirjjr =0 (3.16)
ST otherwise
(,M/ij/

and the biases to

Biir = {log(l/z2) i =0 (3.17)

log(cii /z) otherwise

On the other hand, if the data is arriving over time, the probability estimates
and weights instead have to be estimated from the sequentially available data on-
line. This may be handled by an incremental version of this learning rule.

3.3.6 Incremental Bayesian Learning

A continuously operating network will need to learn incrementally during opera-
tion. In order to achieve this, P(z;)(t) and P(x;ir, z;;)(t) need to be estimated
given the information {x(¢’), t' < t}. What we aim for is an estimate with the
following properties: i) It should converge towards P(xz;;)(t) and P(x,xj;)(t)
in a stationary environment, ii) It should give more weight to recent than remote
information and i) It should smooth or filter out noise and adapt to longer trends,
in other words lower frequency components of a non-stationary environment.

One such estimator is exponential smoothing (Brown, 1963). It fulfils the above
conditions, and can be compared with a moving average with a certain length 7,
and avoids having to store previous values. The incremental Bayesian learning
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rule approximates P(z;)(t) and P(z;,x;;:)(t) with the exponentially smoothed
running averages A;;» of the activity 7;; and Ay 55 of coincident activity 7 7j;0.
The units are assumed to be clamped by the input as the learning takes place.

The continuous time version of the update and learning rule takes the following
form:

Te dhg ( - ﬂu JF Z log Z Wii! 557 7TJJ t) = hai (t) (3'18)
ohiv

T () = o (3.19)

dAZ;(t) = a([(1 = Xo) i (t) + o] — Aiir (1)) (3.20)

Wi 0] _ o (1~ ) (05 (1) + 23] — Ay (8) (321)

Biir (t) = log(Asir (1)) (3.22)

Wiy jj (t) = gl (3:23)

Aiir (1) Ay (1)

The learning rate o = 1/7y, is the inverse of the learning time constant; it is
a more convenient parameter than 7;, and will be used extensively. By setting «
temporarily to zero the network activity can change with no corresponding weight
changes, for example during the retrieval mode.

To avoid logarithms of zero in the calculations, a basic low activity \g < 1
is introduced, a kind of noisy background activity that is present regardless of
external signals. In the absence of input A (t) and A,;/ (t) now converge towards
Ao and A (t) towards A3, producing w;y ;5 (t) = 1 for large ¢ (corresponding
to uncoupled units). The smallest possible weight value if the state variables are
initialised to Ao and A2 respectively is 4\, and the smallest possible bias log(\o).
The upper bound on the weights becomes 1/)g. In the following, A\g is where not
otherwise stated set to 0.0001.

Another way of avoiding underflows which is used in chapter 5 is to introduce
Ao into the weight calculation rather than into the estimates:

(1= 28)Aairjjr () + A3
(1= Ao)Aizr () + Ao) (1 = Ao)Ajjr () + o)

The difference between these two methods is minor in practice.

Exponential smoothing is a good model if the probabilities are assumed to be
constant or change slowly. The estimate will lag for faster changes such as steps,
experiencing a transient ~ 7. This may cause the model to fail to converge to a
good estimate in highly nonstationary environments (e.g. where the probabilities
vary in a sinusoidal manner with a higher frequency than «). The variance of the
estimate is 03 = o2 /(2 — a) where o2 is the variance of input noise. Correlated

wiirjjr (t) =
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noise causes the variance of the estimate to rise (Brown, 1963). To counteract this
a longer time constant is needed. There is hence a tradeoff between a more correct
probability estimate and lesser lag due to transients.

The initial values of the estimates are somewhat arbitrary. One approach is to
set Ajy = Ao and Ay = A3. This is stable in the absence of activity but does
produce transients when units become active (as well as inherently assuming an
absence of activity inconsistent with normalisation). Another approach is to set
Ny = 1/M; and Ay j; = 1/(M;M;), corresponding to the assumption that units
within a hypercolumn are on average equally active and uncorrelated.

The above probability estimates converge towards the correct values given sta-
tionary inputs for sufficiently large time constants. Since the weights of the network
depend more on recent than on old data, it appears likely that a Hopfield-like net-
work with the above learning rule would exhibit palimpsest properties.

A further minor complication relates to units that have never participated in
any shown pattern. Such units will have a disruptive effect on the network due to
extreme valued connections and biases (in a sense the derivation of the BCPNN
learning and update rules does not make allowances for events of features that has
never happened or have zero probability). By explicitly setting their connections
w;; = 1 their influence can be removed.

3.4 Network Learning and Dynamics

3.4.1 Behaviour of Single Connection Weights

We first study how the weight w;;;;; between units ¢’ and jj’ changes with cor-
relation of unit activities. A discretised version of the learning rule was used to
derive these examples.

The behaviour of w;y;;; can be seen in figure 3.1 for two correlated and two
anti-correlated units. When both units are active together for a period of time
the connection is strengthened significantly, but the strength of the connection
decreases during prolonged stimulation. After the stimulation the weight begins
to increase again, a result of the fact that the product A;iA;; decays faster than
Ajir55:. This continues until the estimates level out and the weight goes to zero. It
should be noted that the increase in weights is balanced by the behaviour of the
bias; the network dynamics remains stable despite the strong weight changes.

Non-stationary Activities

The above situation of two units firing together against a background of very low
activity is somewhat extreme given the assumptions of the model. A more canonical
example of the changes in weights due to randomly firing units as well as the
response to non-stationary activities can be seen in figure 3.2 where the two units
are correlated, uncorrelated or anti-correlated with each other at different times.
As can be seen, after a brief transient the log weight moves towards a steady state
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Figure 3.1. Weight between two units that are active together at 10 <¢ < 20
(solid line) and when only one unit is active (dot-dash line) for o = 0.05.
Note the logarithmic y-scale.
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Figure 3.2. Weight between two units that are active 50% of the time, com-
pletely correlated for 0 < ¢ < 200, uncorrelated for 200 < ¢ < 400, completely
anti-correlated for 400 < ¢ < 600 and finally correlated again. The dotted
lines correspond to the predicted values log(2), 0 and log(4A3). In this run
a = 0.05.
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Figure 3.3. Weight between two units during the training of the network
with sparse random patterns (10% activity, 10 time steps of presentation of
each pattern followed by 10 steps of decay with no activity) with o = 0.05.
At time 40 one of the units is recruited into a pattern while the other remains
silent, causing a strong inhibitory connection to develop. At time 420 both
units become recruited by the same pattern, making the connection positive.
It then remains positive for the rest of the run, despite occasional activations
and coactivations.

value of log 2 as the units remain correlated. The transient is due to initialisation of
the estimates to Ao and A3 respectively. As the correlation vanishes the log weight
begins to move randomly with a mean close to zero. When the units become anti-
correlated the logarithm of the weight decreases practically linearly towards the
baseline negative value of 4\% = 4 - 10~8. Finally, when the correlations reappear,
the weight quickly increases to the steady state value.

When a network is trained with a set of random patterns the logarithms of
the weights between two units may change sign depending on whether the units
are activated by different patterns (negative logarithm of the weight) or the same
pattern (positive log weight) as can be seen in figure 3.3.

Figure 3.4 shows the behavior of a weight plus bias between two units belonging
to the same pattern during training. Depending on the learning time constant the
weight changes nearly instantly with exposure, or in a slowly accumulative fashion.

3.4.2 Learning and Forgetting

In the following experiments a network with 100 units organised as 10 hypercolumns
(where not otherwise stated) was first trained by the repeated presentation of the



3.4. Network Learning and Dynamics 53

bias + weight

Il Il Il Il
500 1000 1500 2000 2500 3000
Time (msec)

bias + weight

Il Il
0 500 1000 1500 2000 2500 3000
Time (msec)

Figure 3.4. Weight plus bias between two units belonging to the same pattern
during training, for 7, = 7.2 s (above) and 71, = 20 (below). The network
was shown the pattern five times for 30 msec.

training patterns. Unit activities were clamped to the input patterns for one unit
of time. This was followed by a testing period where o was set to zero and no
learning took place. The continuous update rule from equations (3.18)—(3.23) was
solved using Euler’s method with step length h = 0.1, 7. = 1.

The performance for a given pattern £ was measured as the percentage of per-
turbed patterns (the activations of two previously active units have randomly been
swapped with the activation of other units) which were correctly recalled after re-
laxation to a tolerance of 0.85 overlap (the overlap was defined to be & -7 /||€|]||7]|)

Figure 3.5 shows a comparison between a counter and incremental version of
BCPNN. As can be seen the incremental learning rule avoids CF by forgetting the
oldest patterns while the recent patterns remain accessible. Figure 3.6 shows this
in more detail. The forgetting does not occur immediately: for longer learning time
constants the pattern is stored well until a certain number of interfering patterns
have been stored, when it starts to gradually fade.

3.4.3 Storage Capacity

Figure 3.7 shows the number of retrievable patterns as a function of o and the size
of the training set. For large o the number of retrieved patterns is independent of
the size of the training set. For small o a number of patterns up to the maximum
capacity of the counter model can be retrieved. For much larger training sets CF
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Figure 3.5. Comparison of the previous non-incremental BCPNN learning
rule and the incremental learning rule for sparse random patterns (one active
unit per hypercolumn). The ratio of correctly retrieved patterns (overlap
> 0.85) is shown for the first learned pattern ¢' and the latest £”. Solid line:

latest learned pattern, dash-dotted line: first learned pattern. a = 0.01 in
the incremental case.

300

occurs (as for 400 and 1000 patterns when a < 1073): none of the patterns can be

retrieved due to mutual interference.

The same situation but with only one presentation of the training set instead of
repetition gives a slightly different picture. Here, even for small training set sizes,

the number of patterns retrieved drops for « of about 10™* and below. The reason is

that the learning becomes so slow that repeated training is necessary for encoding.
For «a larger than 10~2 the behaviour is identical with or without repetition, i.e. the
most recently presented patters are remembered well, regardless of training set size.
For large training sets the capacity reaches about 60 % of the maximum capacity.
As can be seen in figure 3.7, for the network simulated this occurs for values of a
approximately 0.02. In summary, for small « the network operates as a long-term
memory of a traditional form, such as the counter BCPNN, thus suffering from
CF. For large « it works as a short-term memory with a storage capacity limited

by forgetting in the form of weight decay. By modulating o we can tune system

performance continuously between these two extremes.

The capacity becomes maximal when the time constant equals the time it takes
to run through the entire training set, aops = 1/V 2 where V is the time each pattern
is presented and z the number of patterns. For larger o the earliest patterns have
faded when the most recent are learned, while for smaller o« CF will occur if the
training set is larger than can be stored in the network since information in the
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Figure 3.6. Typical forgetting curves after incremental learning. Pattern
recall as a function of list position for different values of « (see legend) in a
network with 100 units. Recall was estimated as the frequency of retrieval
with overlap greater than 0.85 after a presentation of a pattern where two
activation of two hypercolumns had been randomly changed followed by 1.0
time units of convergence. Random patterns, 10% activation, 1.0 time units
of presentation during training.

estimates will be averaged together. As shown in figure 4.5, there exists a duality
between exposure time and learning time constant.

The original BCPNN summing rule without hypercolumns was empirically shown
to have a capacity scaling as N?/log?(N) for low-activity patterns (Lansner and
Ekeberg, 1989). Johansson et al. (2001) performed similar capacity estimates for the
counter and palimpsest versions of the current network with /N equally sized hy-
percolumns (Figure 3.8. Empirical estimates showed that the counter version had a
capacity growing as ~ N148 /log(N) and the palimpsest version as ~ N!52 /1log(N),
both very close to N3/2/1log(N).

A heuristic estimate of the maximal capacity can be made based on the as-
sumption that synapses can maximally encode a finite and constant amount of
information: In a fully connected attractor network of N units where each synapse
can encode k bits of information the maximum amount of information that can
be stored is I,,4; = kN?/2. This implies that the largest possible number 2,4, of
patterns containing I bits that can be retrieved from the network is 2,4, = kN?/21
For random patterns consisting of H = N” where 0 < p < 1 hypercolumns (which
implies an average activity of N°~!) the information is

I, = N*logy(N'77) = (1 — p)N”log,(N)
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Figure 3.7. Number of correctly retrieved patterns as a function of a for
different sizes of the training set. 10, 50, 100, 200, 400 and 1000 patterns were
used in the training set, which was repeated 20 times. Successful retrieval is
defined as in figure 3.6. As a comparison the maximal capacity of the counter
model trained with 100 patterns is drawn as a dashed line.

which gives

kN? k N2=r

Fmer = 91— p)Nrlogy(N) — 2(1— p) logy (V)

For p = 1/2 the capacity grows as N3/2/log(N), which fits well with the ex-
perimental results above. This shows that the capacity of the network does grow
at the optimal rate, at least within the size range that has been explored. The
number of bits per synapse was found to be 0.69 in the counter model and 0.49
in the palimpsest model. The counter model is hence about as efficient as the
Willshaw model (log2 ~ 0.693 bits/synapse) in terms of bits/synapse while the
palimpsest memory is about as efficient as the Hopfield network (1/(7log 2) ~ 0.459
bits/synapse, (Nadal and Toulouse, 1990)), although still below the limits of what
can be achieved with continuous-valued synapses (2 bits/synapse for dense coding
and 1/2log?2 = 0.721 for sparse coding (Gardner, 1987)).

Note that the theoretical maximal capacity for a fixed N is maximal for p close to
0 or 1, i.e. either a few very large hypercolumns or many very small hypercolumns;
the smallest feasible hypercolumns are pa. = 1 — log2/log N, corresponding to
two units each. The smallest nontrivial network has two hypercolumns, implying
P > Pmin =10g2/log N.
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Figure 3.8. Empirical capacity as a function of network size for the counter
and incremental version of the learning rule. In the summing case the network
was trained with an increasing number of patterns until a maximum number
of retrievable patterns was reached, in the incremental case it was trained with
a large number of patterns (3-4 times the number that could be stored in the
counter model) and the number of retrievable patterns counted. The number
of hypercolumns were N'/2 and o was shifted optimally in the incremental
case. Least mean square fitting was used to fit kN°/log(N) to the data.
Based on data from (Johansson et al., 2001), used with permission.

However, removing self-connections in hypercolumns complicates things. In-
stead of kN2 /2 storable bits there are k(N? — N272¢)/2, and the maximal number
of retrievable patterns becomes

ko NP N2
Zmazxr =
M —p) Tom(N)

(3.24)

This capacity has one local maximum at p,,,, where the capacity grows linearly
with NV, and a global maximum for a smaller p which approaches p,,;, as N — oo
and corresponds to a capacity growing quadratically. An empirical plot is shown in
figure 3.9. As can be seen, the empirical capacity follows the theoretical maximal
capacity of equation 3.24 fairly well for large p and smaller «, and shows a larger
deviation for small p.

While the capacity grows faster for networks with larger and fewer hypercolumns
they are more sensitive to noise in the form of mis-activated columns (since there
are fewer other hypercolumns to correct the state), making networks with smaller
columns more robust. This can be seen in the response to noise in figure 3.9, where
the introduction of disturbed hypercolumns causes the peak to move to higher p.
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Figure 3.9. Number of retrieved patterns of a 200 unit network (o = 0.1) as
a function of p and «, for 2-50 hypercolumns (left = few large hypercolumns,
right = many small hypercolumns). Retrieval from full pattern and patterns
where activity in six hypercolumns had been randomly changed are shown,
with 100 trials each. Note how increasing noise levels and increasing a move
the location of the peak capacity towards the right. The stair pattern on the
right is due to the remainder between the network and hypercolumn sizes.
Above the simulation plots the maximal capacity of equation 3.24 is plotted,
assuming log 2 bits/synapse.

Hence it is reasonable to assume a hypercolumn size with a mid-range p if the
hypercolumn size is not constrained by the data and the network is assumed to
operate on noisy data or with pattern completion. Incremental learning also acts
as a noise source, decreasing the optimal hypercolum size for larger . This can
be compared to the similar results for a signal-noise analysis of a Hopfield network
with hypercolumns by Johansson et al. (2002).

3.4.4 Convergence Speed

Besides capacity and pattern completion, another characterising property of an at-
tractor neural network is the convergence properties and structure of its state-space.
Especially when viewed as a model for working memory retrieval speed becomes rel-
evant. Figure 3.10 and 3.11 shows convergence times for the network as a function
of age of patterns and as a function of the number of patterns stored. The stopping
criterion used was that the rate of change was below a certain level ||d# /dt||; < 0.05
(similar to Ruppin and Yeshurun (1991)). Trials where convergence did not occur
within 3 time units or where it converged to the wrong attractor were not counted.
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Figure 3.10. Median convergence time and standard deviation for retrieval
of stored patterns from a disturbed input, as a function of position in the
training set. Pattern 1 is the most recently learned pattern. Only retrieval of
correct patterns was counted, and since this was sparser beyond pattern 70
only the first 70 patterns are shown. o = 0.01, the network was trained with
100 patterns.

Using this learning rule, as more patterns are learned, the basins of attraction of
old patterns become smaller and “shallower” in terms of the energy landscape, even-
tually disappearing altogether. This also results in a change in convergence speed.
There is both a difference between patterns, the latest patterns are completed
faster than older patterns, and a roughly linear increase in the median convergence
time between networks where few patterns have been learned and networks where
the capacity has been reached (figure 3.10, 3.11 and 3.12). Once the network has
reached its maximal capacity for a given 77, the convergence time remains roughly
constant (and retrieval is poor). The distribution of convergence time exhibits a
positive skew and the standard deviation of convergence time increases linearly with
training set size.

Figure 3.13 shows convergence times when the network is started with a mixture
between two patterns (the mixing consists of using 0-10 hypercolumns from one
of them and the rest from the other pattern). For the two most recently learned
patterns the convergence time is maximal at a 50% mixture (this is practically
identical to previous results (Lansner and Ekeberg, 1989) for the non-incremental
Bayesian learning rule without hypercolumns). When interpolated between a recent
and an old memory the maximum is moved away from the recent memory, a sign
that the old memory has a smaller and weaker attractor than the newer memory.
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Figure 3.11. Median convergence time and standard deviation for increasing
memory load for o = 0.1 (left) and o = 0.01 (right). The network is trained
with up to 100 patterns, but for &« = 0.1 has capacity for only around 20-30.
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Figure 3.12. Median convergence time for increasing memory load and list
position for a = 0.4.

It can, however, still be retrieved given a similar enough cue.
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Figure 3.13. Convergence time for mixed input patterns. The input to the
network consists of 0-10 hypercolumns of one pattern and the rest from the
other pattern. The solid curve represents interpolation between the latest and
second latest pattern, the dashed curve interpolation between the latest and
an old pattern (#10). 70% of pattern 10 was required to produce convergence
to that pattern. The network was trained with @ = 0.01.

3.4.5 Free Recall with Noise

When stimulated with noise (randomly activated units with the same density as
the patterns) the network either converges to one of the learned patterns or to a
spurious attractor state. This could be viewed as an abstract model of free recall in
memory tests. The probability of convergence towards a certain memory decreases
with its age (figure 3.14a). This is in accordance with the results on learning within
bounds of Geszti and Pazmandi (1987). They found that as more patterns were
stored the basins of attraction of old patterns were more and more flattened energy-
wise, and relaxation tended to move the system to a deeper attractor (i.e. a recent
pattern).

3.4.6 Comparison with Clipped Weights

We compared our results with the performance of a Hopfield network with clipped
weights similar to Parisi (1986). In order to make relevant comparisons we added
hypercolumns with sparse activation to the model with clipped weights.

The weights were set based on the sparse Hopfield network (Hertz et al., 1991):

wiy gy (p+1)=c (wii’jj’(p) + (& — )&y — U))



62 Chapter 8. Bayesian Confidence Propagation Neural Networks (BCPNN)

0.05

0.045

0.035

Frequency
)
o o
N =3
1) @

=4
Q
[N

0.015

0.01

0.005

30
Pattern

Figure 3.14. Frequency of ending up in the different patterns when activating
the network with a random pattern (one randomly selected unit active in
each hypercolumn) and allowing it to converge. Each bar corresponds to
one pattern. The closest pattern to the resulting end state was used for the
diagram. Only patterns with overlap greater than 0.9 are shown; they make
up 0.38 of the trials. 7395 trials where the network was trained with 60
patterns and allowed to converge for 100 random patterns; o = 0.05.

where c is the same clipping function as in equation 3.1 above and o the activity
level. The update rule used was

Tch;j/ (t + 1) = Z Wi/ jj' Tig! (t) — hjj/ (t)

i/

0 h (t + 1) < man(hik(t + 1))
1 hy(t+ 1) = maxy (ha(t + 1))

T (t+1) = {

This guarantees a single active unit in each hypercolumn (in cases of ties, one unit
is randomly selected).

The forgetting curves (not shown) were similar in character to those presented
by Parisi (1986) and also those in figure 3.6, with the clipping range matched to
the learning time constant 7;,. The number of correctly retrieved patterns from
a disturbed input similar to the one used in the capacity experiments showed a
similar behaviour as the incremental BCPNN. The maximal capacity in this model
was around 20-30 patterns for 100 units and 400 patterns in the training set. This
is significantly lower than the incremental BCPNN (= 50 patterns in this case) but
still significantly higher than the numbers given by Parisi (1986) for the case with
50% activity and hypercolumns. Our conclusion is that the two models are similar
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in character but it appears that the BCPNN has a better performance in terms of
storage capacity.

Later comparisions with other rules were done in Johansson et al. (2001), show-
ing similar results.

3.4.7 Different Learning and Forgetting Rates

The basic incremental learning rule has the same learning and forgetting rate; the
probability estimates will increase in the presence of activity with the same speed
as they decrease in the absence of activity.

A small change of the estimate calculation was tested, were the increase when
i was close to one was « and the decrease when 7;;» was close to zero was 3 (not
to be confused with the bias 3;;):

dAzlii;(t) = (B + (o = B) T )[(1 — Ao)fiar (1) + Ao — Aiwr (2)] (3.25)
%jtj/(t) = (B+ (= B)Fiwr ()75 () [(1 — Ao)Tiar ()55 (£) + Ao — Agirjjr ()]

(3.26)

The estimate calculations for a stationary random input still converge to P(x;;)
and P(zy;j), but now increase and decrease at different rates.

The effect was a network with capacity limited by different factors (figure 3.15):
too fast learning tended to overwrite information, too slow learning did not adapt
fast enough to patterns shown a single time. Too fast forgetting limited the capacity
by making stored information decline, while too slow forgetting made the capacity
limited by the size of the network.

It is possible to employ a large o and a low 3 to achieve a network that learns
fast but forgets slowly. However, the number of patterns that can be retrieved are
essentially the same as the capacity for o = 3 for an optimal choice of a.

Such a memory might be used as a working memory or episodic memory exhibit-
ing one-shot learning. The stored information would still be vulnerable to being
overwritten by new information, including irrelevant “noise”. To protect against
this some form of gating mechanism would be needed (as has been proposed for
the prefrontal cortex (Durstewitz et al., 1999)). The gating mechanism discussed
in next chapter based on modulating a could work for this purpose. However, if «
is increased to a higher level with the arrival of new information to be stored and
kept close to zero the rest of the time, the net effect is similar to using the basic
« = 3 network.

3.5 Discussion

We have proposed and characterised an incremental version of a previously de-
scribed Bayesian learning rule (Lansner and Ekeberg, 1989). The new rule allows
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Figure 3.15. Number of retrievable patterns from a network with fast or slow
forgetting. The 100 unit network was trained with 100 (left) or 400 (right)
patterns, shown only once. Along the right edge fast forgetting limits the
capacity. Along the front edge slow learning limits capacity. Along the back
edge overwriting caused by fast learning limits the capacity. The network acts
as the counting model and suffers catastrophic forgetting for small values of

B.

for continuous real-time learning from a sequence of examples without leading to
catastrophic forgetting. Instead, old information is gradually forgotten and only
the most recent examples are retained, as in a palimpsest memory. As expected the
time for the memory decay scales roughly as the learning time constant 7;,. The
memory capacity increases linearly with 77 up to a limit where it becomes equal
to the standard counter BCPNN if repeated enough, and on the same order other-
wise. This means that the introduction of palimpsest properties has not reduced the
maximal capacity as such. By setting the size of the network and the learning time
constant the memory capacity can be regulated from a fast learning and forgetting
“working memory” to a slowly learning and forgetting “long-term memory”. In the
first mode the number of storable patterns is limited by the learning/forgetting rate
(“a-limited”), while in the second mode the limit is the maximal capacity of the
network and exposure time (“size limited”). The time of convergence to a stored
memory state depends both on the age of the memory and the load on the network.

The original BCPNN learning rule is interesting in that it is based on probabil-
ities and statistics rather than being a standard Hebbian outer product rule. Fur-
thermore, palimpsest memories like learning within bounds (Hopfield, 1982; Parisi,
1986) ignore new information supporting an already saturated connection, while
non-supporting information will affect it; throwing out old knowledge is favoured
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regardless of how much positive evidence has accumulated. The learning rule pro-
posed here does not suffer from this cut-off non-linearity and appears to have a
better storage capacity. The learning rule is in some sense similar to marginalist
learning (Nadal et al., 1986), where new patterns are exponentially amplified and
thus old patterns decay correspondingly relative to these. Unlike the learning rule
of Storkey and Valabregue (1999) it does not take local fields into account and does
appear to have a somewhat lower amount of information per synapse, but com-
parision is complicated by the different levels of sparsity employed in the networks
(Johansson et al., 2001).

Biological associative synaptic plasticity is generally assumed to be Hebbian and
correlation based. This is also the case for the Bayesian-Hebbian learning rule used
here. It thus falls in the same category as correlation based learning (Sejnowski,
1989) and the BCM rule (Bienenstock et al., 1982). It exhibits a graded behaviour
with multiple synapse activations as well as a more step-wise behaviour for single
synapse activation similar to experimental observations in LTP (Petersen et al.,
1998). Like the above learning rules the BCPNN rule displays LTP as well as
LTD, and with some modifications it provides a phenomenological model for spike-
timing dependent plasticity (Wahlgren and Lansner, 2001). The rule presented here
contains a bias term which adapts the excitability of the postsynaptic neuron alone.
This relates to the phenomenon of EPSP-spike potentiation which has recently
received increasing attention (Andersen et al., 1980; Jester et al., 1995).

It is interesting that this formally derived model produces a synaptic learning
rule with many similarities to biologically observed phenomena. From a biological
point of view it is quite reasonable to implement the learning rule with running
averages as we have done here. There are several possibilities how a synapse could
realize such computations within the biochemical networks and protein synthesis
dependent processes involved in synaptic plasticity (Bhalla and Iyengar, 1999; Frey
and Morris, 1997).

It should be noted that the derivation of the BCPNN does not take into account
how estimates are calculated. Since they are approximations to the real probabilities
of events, there is already a measure of inexactness in the dynamics. Had the
network been too sensitive to the correctness or consistency of the estimates it would
not have functioned well with incremental learning. From empirical experience the
network appears to be robust to changes in estimation method, including having
different or changing learning time constants for different estimates. Quantifying
this robustness is an important challenge.

While the derivation of the BCPNN induces a particular form of the update
equations due to hypercolumns, simpler variants have been found to exhibit essen-
tially similar behaviour. One example is to base a recurrent network on a BCPNN
without hypercolumns such as the one in equation 3.3, but with normalisation of
groups of units acting as hypercolumns. This has been found to exhibit capacity
comparable to the hypercolumn BCPNN (Str6m, 2000).

In general the presence of a softmax or winner-takes-all rule appears to improve
performance of autoassociative networks. Part of this performance increment is
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likely due to constraining the dynamics onto a subspace of state space where the
memory states are still reachable. Many components of the noise will be filtered
away by the normalisation. This is reinforced by signal-noise analysis of a sparse
Hopfield network with a winner-take-all rule (Johansson et al., 2002). It also keeps
the activity level fixed, making threshold control in order to maintain a set level of
activity unnecessary.

The hypercolumns studied here have many similarities with Potts neurons. K-
state Potts neurons (or spins) can take on K possible states, and within the mean
field framework the probabilities P;(k) of neuron i being in state k are normalized
> i Pi(k) =1 (Kanter, 1988). Potts neurons have mainly been used in optimization
problems (Peterson and Soderberg, 1989, 1998) rather than associative memory.

The input-output function formula 3.4 differs from the standard input-output
relation of neural networks h; = 3; + Zj w;jx; with transfer function z; = f(h;).
It can be viewed as a pi-sigma neural network where h; = §; + log([] > wijz;).
Such higher-order networks have a higher representational capacity than ordinary
perceptron networks while avoiding introducing more free parameters (Shin and
Ghosh, 1991). It is also worth noting that the same form of sum of nonlinearly
transformed inputs have been observed in simulations of pyramidal cells, although
in this case the nonlinearity was found to be sigmoidal rather than logarithmic
(Poirazi et al., 2003). Whether this similarity has any relevance remains to be seen;
the BCPNN framework assumes input from the same hypercolumn to be summed
together, which would imply a degree of synaptic specificity for individual dendrites
that appear unlikely if units were assumed to be individual pyramidal cells. The
interpretation of BCPNN units as minicolumns rather than individual neurons on
the other hand provides a far more complex local circuitry where nonlinear subunit
summing could be achieved in a variety of ways.

In our simulations with a fast learning and forgetting memory we have found
that the average convergence time increases significantly with memory load. This is
similar to the classical finding by Sternberg of a linear reaction time dependence on
the number of items held in working memory (Sternberg, 1966) which has been used
to support hypotheses of scanning processes underlying working memory (Burle and
Bonnet, 2000; Lisman and Idiart, 1995). Our results imply that the psychological
phenomena can equally well or better be described by an attractor network with
fast synaptic learning-forgetting dynamics. Previous parallel accounts have been
based on a limited capacity for processing that has to be shared between all the
comparisions (Atkinson and Shiffrin, 1968), but have been criticized on the grounds
that the inclusion of another parallel task does not affect the relation between
memory set size and reaction time (Sternberg, 1975). This model does not have that
drawback, exhibits positively skewed convergence times similar to those observed in
experiments (Van Zandt, 2002) and also predicts the observed shorter reaction time
to recent items, which is hard to account for in the exhaustive scanning explanation
(Forrin and Cunningham, 1973). For mixed patterns the convergence time shows
the same slowing behavior at a decision boundary as reported in Ratcliff et al.
(1999).
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It is interesting to consider the possibility of having a memory system com-
prised of multiple attractor networks with different learning dynamics and degrees
of plasticity, as suggested by Little and Shaw (Little and Shaw, 1975). A quickly
adapting network would learn and remember presented objects in working memory,
while a more slowly forgetting network might learn from single presentations (as
in episodic long-term memory), and even slower learning and forgetting networks
would average individual presentation events into a "prototypic" semantic memory
(cf. (Brunel et al., 1998) and (Lansner, 1991) for two implementations). Such a
memory structure is compatible with what is thought to exist in human memory
systems (Squire, 1992).

Furthermore an important aspect of memory is that of relevance information and
print-now mechanisms. The learning rule proposed here will result in memory traces
that are volatile in the absence of input since the weights are continuously changing
to obey the current rate estimates. This leads to a gradual decay of memory over
time even when little new information arrives. An alternative possibility is to
control the learning rate by some form of relevance or "print-now" signal. In this
case, simultaneous pre- and postsynaptic activation is not enough to result in weight
changes. It is only when plasticity is enabled by the print-now signal that changes
occur, equally for imprinting and decaying (x in Lansner and Ekeberg (1989)). With
regard to our learning rule, we have found that this can easily be implemented as
a change in the learning time constant (« is increased with the relevance of the
situation) (Sandberg et al., 2001). This will be the subject of chapter 4.
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Chapter 4

Memory Modulation

4.1 Relevance Modulation

Long-term memory (LTM) formation in everyday life often occurs incidentally with-
out explicit intention to remember the information processed. It has been suggested
that memory formation is the dynamic consequence of information processing and
system plasticity (Petersson et al., 1999). Research indicates that specific kinds
of information processing contributes to LTM-formation, including meaning-based,
context and relational processing and factors like emotional significance and atten-
tional allocation (for a recent review see e.g. (Wagner et al., 1999)). Endogenous
processes activated by experience can modulate memory strength in terms of recall
probability (McGaugh, 2000). For example, emotionally arousing (Christianson,
1992) or humorous (Schmidt, 1994) experiences are generally better remembered
than less affective experiences, and hormones and neuromodulators can affect how
strongly experiences are retained (Martinez et al., 1991).

The novelty or uniqueness of a stimulus also plays an important role. The
isolation or von Restorff effect consists of improved recall or recognition of an item
(the isolate) that is distinct or different from the others in a set, while the other
items are less well recalled (retroactive and proactive inhibition) (von Restorff,
1933). While this has mainly been studied in human list recall, a similar effect
has been observed in rats (Reed and Richards, 1996) and monkeys (Parker et al.,
1998). The effect has been explained in terms of interference among non-isolates
(von Restorff, 1933), attention or salience effects, but the interpretations remain
controversial (Sikstrom, 2003).

Some of these factors can be interpreted in the framework of memory consoli-
dation as a relevance modulation of the “print-now” signal by regulating memory
encoding and synaptic plasticity. During ordinary events the plasticity is at a low
level. When salient, arousing or motivational stimuli arrive one or more relevance
detection systems respond to the input and produce a print-now signal increase the
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Figure 4.1. Sketch of a possible relevance modulation system. Sensory in-
put arrives both to an associative memory where it can be learned (i.e. the
hippocampus) and a relevance estimation system (i.e. the amygdala) which
regulates the plasticity of the associative memory.

learning rate, for example through a modulating mechanism. Such a mechanism
might relate closely to neuromodulation in the brain, e.g. the effect of dopamine
(Wickens and Kotter, 1995) and acetylcholine in synaptic plasticity (Woolf, 1996;
Hasselmo et al., 1996).

In an event-related fMRI study of volunteers reading lists of words with seman-
tic, perceptual or emotional isolates activation was observed in the right inferior
prefrontal and bilateral posterior fusiform cortices for all kinds of isolates (Strange
et al., 2000). Perceptual isolates also caused activation in fusiform cortex, emo-
tional isolates in left amygdala and semantic isolates in the left ventral prefrontal
cortex. These results were interpreted as support for the right prefrontal cortex
as a monitor of discrepancy between expectation and experience, which in turn
would activate an arousing or orienting response. Other results (Parker et al.,
1998) implicate perirhinal cortex in this system. In the current model it (together
with the attribute-specific regions handling the qualitative character of the rele-
vance) would be a relevance estimation system and activate modulatory pathways
affecting short-term memory.

The BCPNN learning rule has a time constant of learning that determines how
quickly it will adapt to new information. By modulating this time constant we can
model the modulatory regulation of the print-now signal on associative encoding
of information into for example long-term memory. This modulation was originally
suggested in Lansner and Ekeberg (1989) but not thoroughly investigated.

This paper describes a simple model of an autoassociative network with plas-
ticity modulation for one item, and shows that it can produce the enhanced recall
of the isolate, proactive and retroactive inhibition and an inverted U-shape re-
sponse curve to overall plasticity similar to the one commonly observed in arousal-
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performance or dose-response plots. The effect is compared with a mathematical
model of how basins of attraction age and the effect of changing the mean overlap
between a pattern and the others.

4.2 Effects of Learning Time Constant Modulation

Equation 3.23 was modified to include a time varying relevance/print-now signal
k(t), assumed to be sent from a modulator system as a response to the current
experience:

dAi(t)

2 = (t)a([(1 = Xo)i(t) + Mo — Ai(t) (4.1)
D0 _ (pya(((1 - M) (e (6) + 23] - A (1) (4.2

In the following experiments it was kept at x(t) = 1 except for one pattern in the
training set, the isolate, where x(t) was set to x; during training. Ay was set to
10~* throughout this chapter.

A 100 neuron BCPNN network with 10 hypercolumns of 10 neurons each was
trained by clamping unit activity to each training pattern £” for one unit of time,
allowing the weights to adapt. Retrieval was tested by activating the neurons
with a trained pattern where the activity in three hypercolumns of ten had been
randomised, and then allowed to relax for one unit of time (no learning was used
during testing). Performance was measured by the overlap &7 - x/|€P||x|.

Figure 4.2 shows the selective enhancing effect on recall when an isolate pattern
occurs. Note the inhibition of recall of other patterns in the high «, condition.

Figure 4.3 shows the mean overlap as a function of the modulation strength for
the isolate and for the normal items. As k; increases the recall of the isolate becomes
better and better, while there is an inhibition effect on the other items. However,
it is possible to avoid inhibition in this model for low levels of the relevance signal
while still observing a recall enhancement for the isolate. Inhibition is also stronger
at higher «, where it mainly impairs retrieval of patterns older than the isolate.

When the network is stimulated by a random pattern it will converge to a given
attractor state with a probability depending on the relative volume of the basin of
attraction to the total volume of the state space. Again the isolate is more likely
to be recalled, suggesting that for these parameters the increased plasticity has
enlarged its basin of attraction relative to the other attractors.

If the network has a shorter learning time constant as in figure 4.4, there will
be a memory gradient due to fast forgetting. The increase in plasticity caused by
a strong modulatory input can prevent encoding of the isolate and retroactively
interfere with the early patterns without affecting the subsequent storage of the
network, as can be seen in the right subfigure.

As a preliminary for next section, the effect of base time constant and exposure
time was checked. Exposing the network to input patterns for a longer time was
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pattern and the other patterns as a function of the increase in plasticity x;.
a was set to 1075,
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Figure 4.4. Frequency of ending up in the attractors corresponding to the
learned patterns when activating the network with a random pattern (one
randomly activated unit per hypercolumn) for a high level of plasticity. The
isolate is pattern 41 (left) and 11 (right).

equivalent to a change in time constant: doubling the exposure time corresponds to
halving the time constant (Figure 4.5). This shows that merely holding a pattern
to be encoded longer can be replaced by a corresponding increase in (¢). Similar
to the capacity curves in previous chapter at high a the network learns quickly but
forgets the oldest patterns, while at low « the network learns too slowly to learn
the patterns.

4.2.1 Performance Model

If the network is placed in an arbitrary state it will converge to an attractor state
corresponding to a learned pattern, or possibly a spurious state. The probability
P(&P) of reaching a certain state £P is proportional to the volume in state space of
the basin of attraction, V' (£?). How does the volumes change as new patterns are
learned?

As the network learns a large number of patterns it will approach a stationary
state where the addition of a new attractor will cause the older attractors to shrink
but leave the statistical distributions of attractor sizes time invariant. If we assume
there is no specific interference between one pattern and another (e.g. a low degree
of overlap, such as in the a-dominated regime of a large network) the volume of the
basins will only depend on their age as a decreasing function V' (¢) where ¢ is their
age.
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Figure 4.5. Retrievable patterns as a function of « for one time unit exposure
and 100 time units exposure (200 unit network, 200 patterns shown once).
Scaling up the exposure time is equivalent to scaling down the time constant
the same amount.

One of the simplest choices of V' (¢) and which fits the observed behaviour of the
BCPNN for high « (e.g. figure 4.4) is an exponential decay:

V(t)=(1—e e ™ (4.3)

(here the volumes are normalised with respect to the total volume of state space;
the normalisation constant could be smaller to account for spurious states). A is
assumed proportional to «.

Since a change in the learning time constant is equivalent for this network with
a change in exposure time, a halving of the time constant for a pattern is approx-
imately equivalent to exposing the network to the same pattern twice. Hence the
time can be reparametrised in terms of x(t) to take print-now modulation into
account. Let x(t) = >'_, x(s). Then the above equation becomes

V(t)=(1—e e MDk(1) (4.4)

The above model fits the network behaviour well for small () (figure 4.6).
A temporary increase in k(t) increases V() but at the expense of earlier memory
traces in the simulation. For large print-now signals the effect on V' (¢) also becomes
self-inhibitory as the A estimates decline quickly; the isolate pattern becomes less
likely to be retrieved compared to other patterns. Here the simulation and model
gives different results (compare figure 4.4(b) and 4.6(b)) since the model does not
take the self-inhibition into account.
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Figure 4.6. Volume of attractor states estimated using equation 4.4 to match
figure 4.4.

The lifetime of a learned pattern depends on the size of its basin of attraction.
When the basin of attraction becomes small it is unlikely to be retrievable through
free recall, and eventually it disappears entirely making cued recall impossible.
In the model this can be estimated by assuming that recall is possible if V(t) > e,
where € is a constant dependent on the demands of recall quality. For exponentially
decaying patterns (equation 4.3)) the lifetime L(V)) as a function of the original
attractor volume V;; becomes

1 \% 1
L(Vy) = X log <?O> + X log(1 —e™?)

(here it is assumed that the learning time constant is not changed after the pattern
of interest is encoded; a similar but more complex expression based on equation 4.4
can be derived). If the basin of attraction of the pattern is enlarged by a factor
k compared to the basin of attraction of a non-modulated pattern, the relative
lifetimes become

L(EV)) _ . loa(h)
L(Vo) ' AL(Vh)

Hence we can expect a pattern to survive proportional to the logarithm of the
encoding strength. This fits well with empirical tests of the network (figure 4.7).
An implication of the fit is also that x; =~ k, suggesting that at least low levels of
time constant modulation regulate the size of the basins of attraction proportionally.
The convex lifetime curve makes the benefits of very strong upregulation of x in
terms of pattern lifetime small.
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Figure 4.7. Lifetime of isolate patterns as a function of ;. 50 patterns
were stored in the network before the isolate, and the lifetime estimated as
the number of patterns that could be learned before the isolate could not be
retrieved with better than 0.85 overlap when cued with itself. The points are
the average of 50 trials with o = 0.1 and a = 0.03. A logarithm function was
fitted to the data.

4.3 Correlated Patterns

Another potential cause of the isolation effect is that the isolate has features not
found in the other patterns, i.e. it is less correlated with them. As discussed in
Sikstrom (2003) this is not expected to produce an enhancement effect in traditional
correlation based learning rules, but by adding a sliding modification threshold to
the learning rule decorrelated patterns can become enhanced.

In the BCPNN decreasing the overlap between a pattern and the other patterns
increased its lifetime significantly (figure 4.8). Even the minor decrease of average
pattern overlap (from 1/81 to 1/90) had a profound effect, and a pattern orthogonal
to all subsequent training patterns was not forgotten at all. The reason for this was
the difference in the A; estimate of the “rare” units unique to the isolate pattern.
Since this estimate was smaller than among the regular units the weights connecting
to and from the unit were increased, making the corresponding pattern stronger. In
the case of a fully orthogonal pattern all units were such strong units, and further
training did not cause any interference. Training with patterns of the same type
as the isolate before its presentation abolished most of this enhancement effect
(figure 4.8, white bars), since the estimates were now equally high.

The high variance of lifetimes for the decorrelated patterns was due to the
different number of unique units randomly generated for each pattern. The average
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Figure 4.8. Lifetime of stored pattern when normally correlated (black) and
decorrelated (gray and white) for & = 0.1 and @ = 0.03. White bars represent
decorrelated patterns learned after training with other decorrelated patterns.
Lifetimes were estimated as in figure 4.7 for isolate patterns generated by
randomly selecting active units among all units of hypercolumns, while the
other patterns were generated by selecting from 9 out of the 10 units in each
hypercolumn.

lifetime was found to increase linearly with the number of unique units until the
majority of the units of the pattern were unique. Larger networks exhibited a less
pronounced lifetime enhancement, since the average overlap was smaller due to the
sparser high-dimensional patterns.

4.4 Discussion

We have shown that a model of an autoassociative memory with modulated learning
rate can exhibit selective encoding enhancement of items associated with a relevance
signal. By decreasing the learning time constant the network adapts to a training
input faster, producing a stronger attractor state. The increase in trace strength
improves cued recall for moderate amounts of signal. The stronger attractor has
a competitive effect on other stored patterns and when the signal is too strong
inhibition of other items occurs; for high learning rates the inhibition is mostly
backwards, while for slowly learning networks inhibition can be both forward and
backward. Training the network with a pattern for a longer time was equivalent to
a change in the relevance signal.
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Such a relevance signal would regulate which patterns would be stored in a
flexible way, enabling not just gating of wanted and unwanted memory patterns
but also enhancement of more important patterns compared to ordinary patterns.
Such a mechanism would enable the network to retrieve isolate patterns more easily
during free recall and recall older, but more relevant, patterns long after less relevant
patterns have been forgotten.

Emotional modulation of memory could act through such a signal, strengthening
encoding of experiences associated with arousing states. This would be especially
relevant for an intermediate memory such as the MTL, where later reinstatement
into permanent neocortical storage would be influenced by how the primary en-
coding into the MTL during the experience was modulated by the then current
emotional state.

The number of recallable patterns as a function of the basic time constant ex-
hibits an inverted-U curve shape (figure 4.5) reminiscent to the Yerkes-Dodson law
(Yerkes and Dodson, 1908) or the observed inverted-U dose-response relationship
seen for many memory enhancing drugs (Martinez et al., 1991; Parsons and Gold,
1992). If there is a need to encode relevant experiences at different levels of trace
strength the baseline plasticity needs to be in a range where a change in plasticity
due to the relevance signal produces a large change in encoding success. Near the
maximum of the curve small changes in plasticity have little effect on retrieval per-
formance. If the memory exhibits a U-shaped response to plasticity, this suggests
that the baseline plasticity « should not be close to the maximum of the perfor-
mance curve but rather remain smaller. For small « relevance signals can produce
a strong enhancement as they enable the encoding of new patterns in an otherwise
static memory. An increased level of baseline arousal would decrease the distinction
between relevant and irrelevant memories in such a system. This may relate to the
observation that extroverts (with lower baseline arousal level) perform better at
working memory tasks than introverts (higher arousal level) (Lieberman, 2000).

There is also the possibility of memories using large « values, where k(t) acts
as an inhibitor erasing previous memories when a new pattern arrives. While less
plausible as an intermediate memory storing many patterns, it might be useful as
a sensory buffer.

The enhancement effect of less correlated patterns appears to be very similar
to the isolation effect model analysed by Sikstrom (2003). There a sliding mod-
ification threshold was introduced in the learning rule of a Hopfield-like network
with bounded synaptic strengths. The effect of this modification threshold was to
make synaptic plasticity decrease for commonly active units, and increase for rare
units belonging to less correlated patterns. In the BCPNN learning rule this au-
tomatically happens due to the probability estimates. Synapses connecting one or
two units belonging to many patterns will require more co-activity A;; to balance
the high A; than synapses between seldom activated units. While the model of
Sikstrom is deliberately aimed at examining the isolation effect and making predic-
tions about psychological data, the BCPNN implements the same mechanisms due
to its statistical derivation.
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The two isolation effects can be distinguished by their time-course and effect
on other patterns. Plasticity modulation causes retroactive interference and a rela-
tively small increase in memory lifespan, while decorrelation can significantly pro-
long the survival of a memory even at high levels of plasticity. However, in large
networks with sparse activity random patterns will tend to have less overlap with
each other, decreasing the strength of this effect.

This suggests that one way of disambiguate encoding modulation through plas-
ticity change and decorrelated encoding is the relative inhibition of previous mem-
ories, where plasticity change should cause relatively stronger interference. Adding
new modalities or depth of encoding to the stored information would create a more
widespread and stable representation but reduce the relative improvement in re-
trieval of isolate patterns if they are mainly due to decorrelation, while plasticity
modulation would not be similarly affected. For example, the observation that
memory arts produces improved recall while avoiding proactive and retroactive in-
hibition (Patten, 1990) suggests that it is due to a more widespread encoding rather
than plasticity modulation. Perceptual isolates in the experiment of Strange et al.
(2000) exhibited enhancement compared to control after shallow but not deep en-
coding while emotional isolates were recalled better regardless of encoding depth,
which would support a plasticity modulation account.

In general plasticity modulation can be more flexibly applied than decorrelation,
since it can be tied to arbitrary memories with no need for a different representa-
tion of the information. Decorrelation is a property of the network and learning
mechanism, while plasticity modulation can be placed under dynamic control.

While the experiments in this chapter have demonstrated the effect on a neural
network memory of a relevance signal, the relevance estimation system remains to
be analysed. The exact size of the relevance signal should be a function of the
salience of the pattern being stored, which in turn is determined by the expected
fitness effect of learning it. This in turn depends on estimates of the likelihood of
such patterns and their value. These can be either hardwired through evolution (or
design, in an artificial system) or through learning.
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Chapter 5

Adaptation

5.1 Synaptic and Cellular Adaptivity

Many kinds of neurons, in particular cortical pyramidal cells (see e.g. (McCormick
et al., 1985)), exhibit spike frequency adaptation due to the regulation of the slow
afterhyperpolarization phase of action potentials typically by activity-dependent
influx of calcium ions that opens Ca?*-dependent potassium channels giving rise to
an outward hyperpolarising current. Such adaptation can terminate the activity of
self-exciting neuron populations, giving rise to periodic bursts of activity (Lansner,
1982; Lansner and Fransén, 1992; Lansner et al., 1997) or complex aperiodic dy-
namics (Cartling, 1996, 1997).

In addition, many synapses show depression or facilitation depending on the
frequency of presynaptic spikes and neuron classes (Thomson and Deuchars, 1994).
Many models of synaptic dynamics have been constructed, mainly models treating
the strength of synapses as regulated by the amount of 'resources’ available for
producing an EPSP (Tsodyks and Markram, 1996; Abbott et al., 1997; Tsodyks
et al., 1998). Depletion of transmitter might be one such depression factor, and
the rate of replenishment has been shown to regulate the interval between activity
bursts in CA3 slices (Staley et al., 1998).

Bibitchkov et al. (2002) studied a sparsely coded associative network with binary
neurons with simple resource dynamics, and showed that the addition of adaptation
did not change the fixed points of the network, but reduced their basins of attraction
significantly, in turn reducing the capacity of the network. Similar results were
found by Torres et al. (2002). The behaviour of the binary neuron network was
qualitatively the same as for a network of integrate-and-fire neurons, and exhibited a
dynamics where the network state moved between different attractor states (Pantic
et al., 2002).

Such a dynamics where the network state visits distinct states has many in-
triguing possibilities, both for free recall, search for one or more matching memory
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states to an input and sequence learning. It can be viewed as an implementa-
tion of Hebb’s phase sequence (Hebb, 1949) or Braitenberg’s “pump of thoughts”
(Braitenberg, 1984).

5.2 Phenomenological Adaptation and Reinstate-
ment Model

One motivation for exploring adapting networks is to provide a mechanism for free
recall and reinstatement dynamics in MTL-NCX interactions. In order to model
such reinstatement processes in attractor networks it is necessary to have a method
for replaying the attractor states without external retrieval cues. In order to serve
as reinstatement the dynamics need to reach all sufficiently large attractors, which
is also desirable for free recall. By modulating the learning rate of the network
relevant memories can be enhanced and irrelevant memories suppressed (Sandberg
et al., 2001). The time spent in each attractor state during reinstatement should
ideally reflect the importance of the state.

One possibility is external random stimulation or subcortical disinhibition such
as in the model of Bibbig and Wennekers (Bibbig and Wennekers, 1996). A non-
specific activation would stimulate the network, followed by convergence to a ran-
dom attractor state, which could then be reinstated in the cortex. But how does
the system get out of the attractor state once it has reached it? If the departure
from an attractor state is driven by intrinsic noise, then it seems unlikely the sys-
tem as a whole could sustain the ordered activity necessary for reinstatement or
free recall. If it is externally controlled, for example by the theta rhythm or bursts
of noise, then different attractors will be presented for the same time interval and
their relative strength will be identical even though they might have very different
behavioural relevance.

Another solution is to have an intrinsic mechanism of replay that activates
and terminates attractor states. One such possibility would be depression at the
synapses involved in the active pattern, alone or in combination with neural adap-
tation. As the network stays in one attractor the synapses sustaining the activity
between the participating cells adapt and weaken and the active neurons accumu-
late hyperpolarisation. Eventually that group of cells will become unable to sustain
their activity. Another attractor will become dominant as local noise is amplified by
disinhibited cells. The system can be seen as a bursting intrinsic rhythm generator
similar to the model of spontaneous episodic activity in the developing chick spinal
cord of Tabak et al. (2000) or the lamprey (Lansner et al., 1997).

This form of replay dynamics does not need any external top-down control, and
is regulated by the timescale of synaptic adaptation. The overall dynamics consists
of a fast dynamics with timescale 7. involving convergence to attractors and a slow
dynamics with timescale 74 of adaptation of synapses leading to a shift to a new
attractor. The learning dynamics corresponds to a third, even longer timescale 7y,
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which changes synaptic connection matrix and thus the attractor states.

Properly speaking the attractor states above are not attractor states, but parts
of an attractive limit cycle or strange attractor where the dynamics is slow. They
are similar to the quasi-attractor states of Amit (1989) in that they are initially
robustly attractive, stable on a timescale longer than 7. but eventually become
destabilized. However, in the following activity states with such slow dynamics in
the vicinity of the states that would be fixed point attractors in a non-adapting
network will be regarded as “the same” (quasi)attractor states.

In the following we will explore a phenomenological model of adaptation-driven
dynamics in an attractor network, where adaptation is modeled using an extra
Hebbian associative projection with negative gain. The strength of this projection
between two units represents the level of adaptation of their synapses, depression or
facilitation. Since the bias of a BCPNN is closely related to the weight dynamics the
bias of the adaptation projection is also included, representing firing rate adaptation
of the receiving units. Two co-active units will cause their mutual connection in the
adaptation projection to increase in weight similar to how learning occurs in normal
projections. But since the gain is negative, the net effect will be a decrease of the
effective input from the other unit and bias. This is essentially equivalent to the
unlearning of van Hemmen (1997), but seen as temporary rather than permanent
When units are inactive the projection returns to a low value through “forgetting”,
restoring the original synaptic efficacy. Since the learning and unlearning processes
are equivalent (up to a gain factor and the time constants) they will balance each
other.

The strength of the gains of the projections as well as the time constants are
plausible targets of neuromodulation. Acetylcholine inhibits associative connec-
tions in cortical networks and facilitates the induction of synaptic plasticity while
suppressing adaptation (Hasselmo and Cekica, 1996; Hasselmo, 1999; Barkai and
Hasselmo, 1994). Similarly noradrenaline can inhibit excitatory intrinsic connectiv-
ity producing a more input-controlled network state (Hasselmo et al., 1997) while
enabling LTP and blocking LTD and delayed facilitation (Thomas et al., 1996;
Katsuki et al., 1997; Cloues et al., 1997). Dopamine also appears to inhibit associa-
tive connections in order to produce more localised activation Nunez (1995), which
together with the increase in plasticity due to D1/D5 receptors Otmakhova and Lis-
man (1998) could lead to improved selectivity in sensory learning Bao et al. (2001).
In this model these effects could be represented by decreasing 71, 74, ga and g,
while increasing g; (see below). 5-HT appears to increase the gain of associative
fibres and possibly decrease the gain of inhibitory feedback loops Nunez (1995), as
well as promoting synaptic facilitation Kozlov et al. (2001). In the model this would
correspond to an increase of g5, and g4. Hence the network could be moved be-
tween an input-driven learning state (high catecholamine level, low 5-HT), a point
attractor state (intermediate modulation) and an adapting state moving between
attractors (high 5-HT, possibly some catecholamine modulation).
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5.3 Network

The adaptive synapses were modelled by adding an extra projection between the
units of a BCPNN, but with negative gain —g4 and its own learning time constant
Ta. In these simulations 74 has where not otherwise stated been given a value of
160 msec, corresponding to the decay rate of the action potential related Ca?* pool
in the previous biophysically detailed pyramidal cell model (Fransén and Lansner,
1995).

The update equations used are:
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The weights w;; (the normal associative connections) and v;; (the virtual adaptation
projection) and their corresponding biases 3; and ~; are set by the learning rule

w(m 250 ) - a0 (5.3)
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Bi(t) =log(Au(t)) (5.5)
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(1) = log(ua(1)) (5.9)

Vi (t) _ (1 - AO)Mij (t) + A0 (510)

(1 = Ao)pi(t) + o) (1 = Ao)p (t) + o)

This is a top-down functional model rather than a qualitative attempt to mimic
biology. An advantage is that it can be directly combined with the other models
developed in this thesis and the unlearning mechanism is easy to balance with the
learning dynamics.
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Figure 5.1. Left: overlap between network state and learned patterns over
time as the network wanders between quasi-attractors. Right: support (sum
of weighted input and bias) for units belonging to the different patterns as a
function of time.

5.4 Quasi-Attractor Dynamics

In figure 5.1 a 100 unit network was trained with 10 orthogonal patterns, with a
learning time constant of 7, = 7200 msec (learning was subsequently turned off).
It was then allowed to run freely for 9 seconds. The figure shows the overlap of
the network activity with different stored patterns as a function of time. As can
be seen the network state cycles through the patterns, remaining in each for a
brief period of time. The synapses quickly depress and active units adapt, cutting
off the activation and producing a refractory period where the pattern cannot be
reactivated.

The network converges to a quasi-attractor state on a timescale of 7.. Each
unit belonging to the cell assembly will gain a strong support from the other active
units and inhibit competing units. But the activity causes the effective bias 3; — ~;
to decrease, as well as the support from the other member units via the effective
connections (figure 5.2 and 5.3). If ga/gr, > 1 the total support becomes too low to
sustain the quasi-attractor and the activity decreases quickly. Meanwhile the units
belonging to the least inhibited quasi-attractor (due to a low level of adaptation
and/or overlaps with the current quasi-attractor that stimulate some of the member
units) will increase in activity due to a lessened inhibition and the normalisation,
and quickly replace the previous state.



86 Chapter 5. Adaptation

Activity
°
o -
T T
p—
—
i —
—
[——

0 100 200 300 400 500 600 700 800 900 1000

N
o o
T

Membrane potential
S
S S
T
L

|
-3
S

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

o = N W
T
L

Effective bias

100 200 300 400 500 600 700 800 900 1000

o

r N N ™ N~ *
’w’m‘f\/" L ‘\/\J L~ Y

Effective weight
Lo - now

_ I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Time (msec)

Figure 5.2. Output of a unit, membrane potential (support), effective bias
Bi — i and effective synaptic weight w;; — v;; for a synapse connecting it to
another unit associated in the same cell assembly. As the cell assembly is
activated, the bias rapidly decreases and synapses quickly depress and cut off
the activity. During the inactive periods a gradual recovery occurs, making
activation more likely over time.

The mutual information between the current attractor state S(t) (defined as the
memory state & closest to #(t)) and the state at time t — A

P(S() =€, S(t— &) =¢&)
P(S(t) = €)P(S(t = A) =€)

I(A) ZZP(S(t) =¢&,5(t-10) = ¢’)log, (5.11)

exhibits a non-monotonic decline (figure 5.4). This is caused by the anticorrelation
between the current state and the state after adaptation; the dip at ~ 120 msec
implies that the next state will be affected much more by external factors than the
current state. The nonmonotonicity also shows that the dynamics is not a true
Markov chain, since extra information about the past is “hidden” in the adaptation
state. The autocorrelation function averaged over all units shows a similar behavior.

For quickly learning networks (shorter 7;,) only the latest patterns are retrieved,
while for more slowly learning networks nearly all patterns are eligible for retrieval
(figure 5.5a and 5.6). For networks with fast adaptation (shorter 74) more quasi-
attractors can be reached in a given time but they are presented more briefly
(shorter dwell time), while for slow adaptation they tend to remain in a single
quasi-attractor for a long time (figure 5.5b and 5.7a).

If one pattern is learned more strongly than the others the quasi-attractor is
visited more often (Figure 5.7b). This can occur both by prolonged or repeated
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Figure 5.3. Effective bias plotted versus membrane potential for a single
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Figure 5.4. Time delayed mutual information I(A) as defined in equation 5.11
for the adaptation dynamics and for data generated from a Markov chain with
the same transition probabilities. 9000 msec data from a network trained with
10 orthogonal patterns was used.
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of free recall as a function of learning time constant (left, 74=160 msec) and

adaptation time constant (right, 7,=7200 msec). 200 unit network trained
with 20 random patterns.
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Figure 5.6. Total time spent near (overlap > 0.85) different quasi-attractors

during adaptation, average over 100 runs. To the left for a quickly learning
and forgetting network, to the right a slowly learning network.
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Figure 5.7. Left: Time spent in each visit to a quasi-attractor state as a
function of adaptation time constant (7, =360 msec). Right: Dwell time spent
in the vicinity of a quasi-attractor that was learned using a modulated learning
time constant x7z, and the mean time spent in the vicinity of other quasi-
attractors. For k = 1 all patterns are learned equally, while the isolate pattern
is strongly inhibited for x < 1 and enhanced for larger values. Compare to
figure 4.3b in chapter 4.

exposure or by a temporary modulation of the learning rate (Sandberg et al., 2001).
Since behaviourally important patterns likely have stronger quasi-attractors in the
MTL system than irrelevant patters, they will be retrieved more often in the rein-
statement dynamics and hence be imprinted more strongly in the cortex.

5.5 Dwell times and Pattern Overlaps

The dynamics of the network depends in a complex way on the relative overlaps of
the attractors, but the the distribution of time between the quasi-attractors depends
mainly on their relative strength and average overlap with each other. Figure 5.8
shows the distribution of total time spent in different quasi-attractors as a function
of their average overlap s; = (1/Nz)3_ &"-&'. The total time spent in a certain
quasi-attractor is roughly a linear function of a — bs; plus Gaussian noise. The dwell
times (not shown) have a similar distribution.

For small networks the high degree of overlap makes the distribution of dwell
times uneven and low, but as the size of the network increases they approach a
more even distribution due to increasing orthogonality.

Similar to the experiments in section 4.3 an isolate pattern that is very different
from other patterns (low s;) will be more strongly recalled even without any x
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Figure 5.8. (left) Total time spent in quasi-attractor states as a function
of sum of overlaps. (right) Mean dwell time in quasi-attractor states as a
function of sum of overlaps.Each ring is a quasi-attractor state. 10 random
patterns, one of which had no overlap with the others.

modulation. This property remains regardless of whether retrieval is based on
convergence from noise input or adaptation, and appears due to a larger sized
basin of attraction.

5.6 Second-Best Match

Driving an autoassociative network to a desired state with an external input requires
a high input gain or lowering the autoassociative gain enough to overcome the
attraction to the current state (which could be a possible role for neuromodulatory
influences, e.g. see Hasselmo et al. (1997)). The adaptation dynamics discussed in
this chapter suggests an alternative way. As the current attractor state depresses,
the network briefly exists in a state where the effective weights (the weights between
strongly active units) are close to zero and hence the network is easily influenced
by external input. An adapting network will hence tend to approach a “suggested”
state, which enables both external control, second-best match and online learning.
This is similar to the results of Bibitchkov et al. (2002) for a binary network.

The adaptation dynamics also enables second-best match to input. If a mixture
of learned patterns is given as an input during adaptation it will bias the dynamics
towards the most closely related quasi-attractors. Figure 5.9 shows the effect of
different strengths of adaptation gain on the dynamics as a mixture is shown. For
small g4 the network becomes trapped in the last training pattern and does not
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Figure 5.9. (a) Effect on different strengths of adaptation gain g4 on the
dynamics. For the first half of the simulation input was turned off, then a
50-50 mixture of pattern 4 and 8 was shown. The network was trained with
10 patterns shown as different grayscales, 7 = 7.2s. (b) Total dwell time in
pattern 4 and 8 without external input (dash-dotted line) and with external
input (solid line).

move between the attractors. For higher values it remains in the last quasi-attractor
as long as no external input occurs, but begins to wander between the closest quasi-
attractors to the input when it is activated. For a narrow range just above g4 =1
it exhibits both free-running dynamics and a lock to the input patterns. For larger
gains the dynamics becomes increasingly internally driven; while the input still
biases the dynamics towards closely matching patterns all other patterns are also
visited. If overlapping patterns are used (not shown) the essential dynamics remains
the same, but with the added complexity of different patterns appearing in an order
dependent on overlaps.

Similar effects were seen by modulating \g and gy, for moderate strengths of the
gain g4 ~ 1 but not for stronger g4 = 4. The relative dynamical range was wider,
suggesting that keeping ga close to the transition between the modes can enable
modulation of other parameters to regulate the network dynamics effectively.

5.7 Online Learning
External input can cause the network state to move during the fast dynamics to-

wards a state which is not a quasi-attractor. If learning is active that state will be
reinforced, and may in time become a quasi-attractor state on its own (figure 5.10).
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Figure 5.10. Overlap with quasi-attractors (10 orthogonal patterns) as a
function of time for 7, = 300 s (above) and 75 = 30 s (below). In the first
case several repetitions of the patterns are necessary to build up stable quasi-
attractors. In the second case just one initial presentation is needed. Once the
movement between quasi-attractors has become stable, it interacts strongly
with the external input.

If the learning time constant is short the patterns will be learned nearly immedi-
ately, and if there is a variation in the input (such as noise or a variable feature)
the latest presentation will be recalled, a form of episodic memory. If a more slowly
learning network is used more repetitions are needed and the variable features will
be averaged together, forming a “semantic” memory.

Since sufficiently strong adaptation dynamics precludes dwelling permanently
in a single state, the different quasi-attractors (or a subset of them) will be visited
over time and each time slightly reinforced. This form of online memory constantly
refreshes itself and retains the capacity of learning from an external input (fig-
ure 5.11). Over time the first patterns will be most strongly learned as they have
repeated the most, and while they cannot dominate the dynamics completely there
will be a notable primacy effect.

5.8 Discussion

We have showed how synaptic depression and unit adaptation in combination in
an attractor network can produce a stochastic dynamics, where the network spends
much of its time close to stored attractor states but shifts between them on a
timescale set by the adaptation time constant. This is in qualitative agreement
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Figure 5.11. Overlap with quasi-attractors (10 orthogonal patterns) as a
function of time for online learning. Plasticity and adaptation are active at
all times. At the left an input of the training patterns is given with delays
between each pattern. The network begins to repeat earlier shown patterns,
eventually learning them all.

with biology and could be an intrinsic way of achieving reinstatement of earlier
learned information for memory consolidation purposes or free recall.

In general the dynamics appears to exhibit sensitivity to initial conditions with-
out any external source of noise. It is not a random walk between states, although
the frequency of visits to quasi-attractors appears proportional to their basins of
attraction. Which quasi-attractor is chosen after a given attractor depends on the
extent of overlap and adaptation state in a complex way, but the likelihood of end-
ing up in a particular attractor is on average a decreasing function of its uniqueness
s; and a convex and increasing function of the print-now signal during encoding.
Member units of a quasi-attractor with high overlap with other quasi-attractors
will on average be more depressed than units of an unique quasi-attractor, giving
such quasi-attractors an advantage in the competition.

The loss of stability of the quasi-attractor state corresponds to a saddle-node
bifurcation with the adaptation acting as a control parameter. As it increases,
the radius of the basin of attraction surrounding the current quasi-attractor state
decreases. Eventually the basin boundary meets the quasi-attractor state and the
stability changes. This bifurcation is affected by parameters that change the effec-
tive transfer function such as \g and g4/¢gr. In general the network shifts between
quasi-attractors when g4/gr, > 1; the adaptation has to be large enough to over-
come the underlying weight matrix. However, as demonstrated in section 5.6 moves
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between attractor states can occur for ga/gr < 1 if an external input is present.
The effect of the input is to bias the dynamics of the network, essentially tilting the
energy landscape in a certain direction and hence changing the stability of some
attractors enough to allow shifts between them.

The dynamics can be interpreted in the BCPNN framework as the deliberate
(temporary) exclusion of a certain hypothesis about the world state. After adap-
tation the effective network weights and biases approximate a situation where the
original state has not been learned rather than merely inhibiting the state.

A network such as this repeating its contents has many similarities to connec-
tionist models of serial order such as response competition and competitive queuing
models (Houghton, 1990; Houghton and Hartley, 1995). Each quasi-attractor state
can be viewed as being queued by its level of adaptation. A strongly adapted state
is placed at the end of the queue, a weakly adapted state at the front. Due to
competition only one state will become active at a time, and that will likely be the
least adapted state.

A limitation of this kind of inhibition or unlearning-based method of accessing
multiple memory states is that it will tend to return to earlier states. If the num-
ber of stored states is large the first visited states will have recovered from their
adaptation before the weaker states have been visited, and the network returns to
the early states. While the addition of noise can cause ergodicity, another possibil-
ity is to add a second adaptation projection with a time constant on the order of
the time needed to pass through all stored patterns, penalising the early patterns
to give later patterns a chance. Such an extended adaptation can also counteract
the primacy seen in online learning. Biologically it does not appear unlikely that
adaptation occurs on a range of timescales, and it does not require the time-varying
control signals used in competitive queueing models (Houghton, 1990). A prediction
is that pharmacological disruption of slow adaptation effects in biological networks
would cause them to more easily fall into short cycles of activity.

As a reinstatement model the adaptation dynamics allows stored patterns to be
replayed to other parts of a large learning system with a dwell time based on the
strength of encoding. Preliminary results (Liljenkrantz, 2003) show that a model
based on adaptation-driven reinstatement can produce results similar to Alvarez
and Squire (1994).

This model has many similarities to the models proposed by Lansner and Fran-
sén (1992) and Cartling (1997), which are based on spiking neurons with firing-rate
adaptation. As adaptivity is increased the fixed-point attractors become unsta-
ble and a limit-cycle or periodic behaviour occurs. Wu and Liljenstrom (1994)
and Cartling (1996) suggested that modulation of the adaptivity could be used
as a hierarchical search process, where associative recall starts with a high level
of adaptation causing the dynamics to move around widely, gradually narrowing
in on the desired category as the level of adaptation was reduced and eventually
retrieving the information as a fixed-point attractor. A similar dynamics could be
implemented in this network by modulating g, together with g 4; as shown by Eriks-
son and Lansner (2003) modulation of g7, can act as clustering, and an additional
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modulation of g4 would determine the amount of exploration.

The dynamics is also very similar to the one reported in pure synaptic depression
models (Bibitchkov et al., 2002; Torres et al., 2002; Pantic et al., 2002). As remarked
in Pantic et al. (2002) cellular adaptation and synaptic depression are to some extent
equivalent. This model shows how unlearning also can be seen to belong to this
class of similar (but possibly not formally equivalent) models.
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Chapter 6

Working Memory

6.1 Introduction

The mechanisms behind the cognitive functions of the human brain remain enig-
matic. Relevant experimental data at the microscopic level of ion channels, synapses
and neural activity as well as the macroscopic level of psychophysics and cognitive
psychology is currently rapidly accumulating. Computational models provide a way
to bridge the gap between these levels of description and to integrate information
from multiple sources into a coherent picture. A good predictive model allows the
experimenter to design maximally informative new experiments.

The memory systems of the brain are key players in cognitive functions. They
exist in several different forms and have been characterised along dimensions like
episodic-semantic and declarative-procedural. Here we focus specifically on working
memory, the retention or maintenance of information for short periods of time,
usually linked with an ongoing behavioural task. The paradigmatic experiment has
been the delayed response task (see (Goldman-Rakic, 1995, p1)). In the oculomotor
version of this task (Funahashi et al., 1989), the location in visual space has to be
remembered over a few seconds after which a suitable response should be generated.

For a long time, computational theories and models of memory processes ad-
dressing the cellular and network level have focused on long-term memory. More re-
cently, working memory processes have attracted the attention of modellers (Durste-
witz et al., 2000; Compte et al., 2000; Wang, 2001; Tegnér et al., 2002). In con-
trast to network models of long-term memory, current working memory models
rely mainly on reverberatory, persistent activity (Goldman-Rakic, 1995; Amit and
Brunel, 1997a; Compte et al., 2000) in a network with fixed connectivity. The
line attractor version of memory originally proposed as a model for the visual hy-
percolumn (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1996) has been the
starting point for modelling this kind of working memory, assumed to reside in the
prefrontal cortex (PFC).

97
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These models, however, largely disregard important characteristics of the un-
derlying neuronal substrate like synaptic plasticity on the task relevant time-scale
0.1-10 s (Hirsch and Crepel, 1990; Hempel et al., 2000) and neuronal adaptation,
which is known to destabilise line attractors (Laing and Longtin, 2001). Their oper-
ation is also sensitive to distractors unless additional stabilising factors are included
(Compte et al., 2000). In addition, working memory is generally thought to be able
to hold several items (7+2) at the same time. A robust mechanism for this has not
been demonstrated in the persistent activity working memory models.

Here we investigate the alternative hypothesis that short-term Hebbian plastic-
ity is sufficient to account for the phenomenology in WM tasks. The presentation
of a stimulus induces the formation of a corresponding attractor state which can
later be read out as reverberatory activity. Persistent activity is still an integral
part of this hypothesis but it now acts as an indicator of which stored memory is
currently relevant and active. Short-term forms of memory based on fast synaptic
plasticity have previously been suggested (von der Malsburg, 1981). A unification
of different memory mechanisms acting on a range of time-scales is an attractive
consequence of such hypotheses.

Since the Hebbian property is crucial in attractor memory models our hypothesis
suggests the existence of fast Hebbian synaptic plasticity in the underlying cortical
memory networks, e.g. the PFC. The existence of such forms of synaptic plasticity
has not yet been experimentally established, but remains an open possibility.

In the following, we investigate this hypothesis in the context of a recently
described attractor network model capable of acting as a long-term as well as short-
term palimpsest memory and described in chapter 3.

6.2 The network simulation model

The BCPNN acts as a palimpsest memory where new information overwrites old
and memories decay at a rate set by a learning time constant modulated by a print-
now signal as in chapter 4. By temporarily up-regulating the print-now signal it is
possible to imprint relevant stimuli while partially over-writing information already
stored. While the print-now signal is zero no weight changes occur. We have hy-
pothesised that the print-now signal could correspond to dopaminergic modulation,
which is well represented in the PFC and facilitates synaptic plasticity (Wickens
and Kotter, 1995; Otani et al., 1998; Durstewitz et al., 1999; Cohen et al., 2002).

This model allows us to simulate long-term as well as intermediate and short-
term memories. In a short-term memory of this type the effective capacity is set by
how strongly new information is imprinted, at the same time forcing old information
to decay. With a print-now signal above a certain level, the memory becomes
episodic, i.e. no repetition of the stimulus is necessary.

The BCPNN learning rule has previously been used to set the weights in a cor-
tical network model implemented with biologically detailed compartmental model
neurons and with cortical minicolumns as its functional units (Fransén and Lansner,
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1998). That study suggests that it is reasonable to view the units of the BCPNN
network as cortical minicolumns.

To model cellular adaptation and synaptic depression/facilitation we use a sim-
ple phenomenological model. The adaptation is modeled as temporary 'unlearning’
of the same form as the learning rule. It is implemented as an associative projec-
tion with negative gain and a short time constant (see chapter 5). This results in
a decrease of the effective synaptic weight between units active together for a long
time as well as an increasing negative bias, thus removing valleys in the energy
landscape while the network state remains in them. When units are inactive the
projection returns to a low value, restoring the original synaptic efficacy. Since
the learning and unlearning processes are equivalent (up to a gain factor and time
constant) they will balance each other.

6.3 Setup of the delayed oculomotor task

As in previous bump state models of working memory, the canonical experiment
was based on the oculomotor delayed response task. In this task a monkey is trained
to fixate on a central mark on a screen during a brief presentation of a peripheral
cue. The gaze remains on the mark during a subsequent delay period until a signal
is given for the animal to make a saccade to the cue position.

In our model the network was first subjected to a period of no input corre-
sponding to the pre-trial period. This was followed by a 300 msec cue stimulus
and a simultaneous print-now signal which caused an update of synaptic weights.
After the cue the network spent 3 seconds in a delay period with no input and no
print-now signals.

After the delay period a reset signal was given in the form of strong stimulation
to all neurons in the network together with another print-now signal. While models
with persistent activity only need to reset the neural activity itself (Laing and
Chow, 2001; Gutkin et al., 2001), in this model the reset signal is also assumed to
be associated with a print-now signal erasing the changed synaptic weights. This
print-now signal could be the same as that imprints the next stimulus, acting as a
gating signal (Durstewitz et al., 1999).

The network consisted of 100 units fully connected to each other with a total
normalized activity (this is similar to the setup in (Ben-Yishai et al., 1995); the
hypercolumn in this model is, in fact, analogous to several identical hypercolumns of
the type used in earlier chapters connected to each other). Each unit received input
with different spatial tuning, corresponding to a projection from a population of
location sensitive cells in the parietal lobe. For simplicity of display the units were
ordered according to their favoured orientation. Each target angle 6 corresponded
to an input of the form

9N|2/o_2

I = Ze li=%% (6.1)
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Symbol Parameter Value
Cue length 300 msec
Delay period length 3000 msec
Reset period length 300 msec
N Number of neurons 100
o Input tuning width 10
g1 Input gain 1
gA Adaptation gain 0 or 0.35
gN Noise gain 0.1
TL Learning time constant 7200 msec
Te Membrane time constant 10 msec
TA Adaptation time constant 160 msec
k(t) Print-now signal 0 or 1, 90 for reset

Table 6.1. Default parameters of the model.

where Z is a normalisation constant, N is the number of neurons and o = 10.
The distance is assumed to wrap around the population, producing a ring-shaped
network metric. If not otherwise stated the input gain (g;) was set to 1, the learning
time constant (77) to 7.2 s and the print-now signal to 1 or 0.

As the in the chapter 5 simulations the time constant of the adaptation projec-
tion 74 has (where not otherwise stated) been given a value of 160 msec, correspond-
ing to the decay rate of the action potential related Ca?" pool that contributes to
the accumulated after-hyperpolarization in the previous biophysically detailed pyra-
midal cell model (Fransén and Lansner, 1995). In the initial experiments reported
below g4 = 0, while in the subsequent experiments with adaptation g4 = 0.35.

The noise input to the support was Gaussian with mean 0 and variance 1 and a
default gain (gn) of 0.1. In the inhomogeneity experiments synaptic strengths and
time constants (which were set individually for each synapse) were subjected to
noise. The noise was uniformly rather than normally distributed in order to avoid
negative time constants and synaptic sign reversals.

The model parameters have been collected in Table 6.1.

6.4 Results

The network was tested in the simulated delayed oculomotor task, both with a single
and several cues to remember. Different distractors were added during the delay
period and the tolerance to noise and parameter inhomogeneity was investigated.
The network exhibited one-shot learning of a bump shaped attractor state. The
bump activity profile can be viewed as a tuning curve. When exposed to a cue
input consisting of a single bump for 300 msec, the network was able to sustain the
bump throughout the delay period due to the change in local excitatory connections
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Figure 6.1. (a) Activity of network during a simulated oculomotor delayed response
task. Activation of network units is marked by gray-scale. The cue exposure caused
a broad activation between 300-600 msec, followed by a persistent activity state
until the reset signal at 3600 msec. (b) Weight matrix after the cue period. Bright
areas correspond to excitatory interactions and dark areas to inhibition. The units
near the target direction have formed a self-exciting group, with lateral inhibition
to and from all other units. (c) Bias of the units. Most units have a very low bias,
but those units close to the target direction have become more excitable.

and long-range inhibition (Figure 6.1). The increase in lateral inhibition stabilised
the location of the bump while the increased local excitation induced a persistent
activity state. The reset signal abolished the synaptic changes, thus dissolving the
persistent activity state.

The activity of units not corresponding to the cue was reduced during the delay
period relative to the spontaneous activity before the cue or after the reset signal.

As a rule, the bump state was resistant even to high levels of noise and did not
drift, since its position was determined by the weight matrix and the neuron biases.
Since it was the only attractor state of the network the activity profile resumed
its shape and location if disturbed or if the activity was reset. Experiments with
increasing levels of noise showed a broadening of the bump state, until the noise
amplitude was so high that it dominated over the recurrent input. At the same
time the population vector remained fixed to the peak of the original cue, i.e. there
was no true drift.

An interesting phenomenon was the sharpening of the bump state relative to the
cue signal during the delay period (Figure 6.2(a)). This was due to the creation of a
weight matrix with a nonlinear relationship to the original bump size. The learning
process of attractor networks does not in general guarantee memory states identical
to the input causing them, but it tends to create stable states in the vicinity of the
input. The exact relationship between the shape of the original cue signal and the
persistent activity pattern will in general depend on details of the learning rule used
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Figure 6.2. (a): Typical bump activity profile for the network. Mean activity
during the cue and delay period for one trial. Eight equidistant points have been
marked for comparison with (Funahashi et al., 1989, fig 9). Shape fluctuations due
to a noisy cue are imprinted in the delay activity, as can be seen near the top. (b):
Activity when the network was exposed to three cues during the cue period. This
created a synaptic matrix with three metastable memory states, each individually
similar to the state in Figure 6.1. The activity remained in the state corresponding

to the last cue until being reset. (c):

Plot of weights from a single neuron after

learning 8 bump attractors. (d): Weight matrix after learning 8 targets.
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Figure 6.3. (a) If one pattern was stored, distractor input had no lasting effect: the
activity returned to the stored target. (b) If several targets were stored sufficiently
strong input allowed the network to shift between them. In the three target simu-
lation the distractor occurred at position 40, but the resulting bump was strongly
attracted to the memory state at position 25.

and its time constants; hence biological observations of these relationships can be
used to support or rule out proposed network models.

If several patterns were presented in turn during the cue phase (each pattern
for 300 msec), the last one remained active (Figure 6.2(b)). If a sequence of targets
were shown during the cue period the weight matrix developed into a band matrix
with translation symmetry corresponding to a ring attractor family (there is an
asymmetry caused by the aging of the memories, but for the current parameters
and cue exposure times this is small). Each unit developed excitatory connections
to units with similar spatial tuning and inhibitory connections to remote units
(Figure 6.2), similar to the rotation invariant pre-wired synaptic matrices used in
previous bump state models.

These multiple bump states were metastable attractors: a sufficiently strong
stimulus (“distractor”) could shift the network state to one of the other stored
patterns (Figure 6.3). However, distractors had only temporary effects when a
single target had been stored. For increasing input gain it became possible to
temporarily shift the bump towards other positions, but when the input ended the
network returned to the stored bump state. The shift appeared to be “elastic” and
non-linear: for small input gains the distance moved under the influence of external
input was proportional to the gain, up to a critical level where the bump instead
moved directly to the input direction. When several targets had been stored the
distractor would cause a bump intermediate between the distractor location and
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Figure 6.4. Network performance as a function of noise level, synaptic dilution
(left) and standard deviation of time constants (right). The network was trained
with 8 attractors and placed in one of them. The average overlap between the
network state and the original pattern in the period 800-1000 msec afterwards was
plotted. Noise was measured relative to the average value of the unit potential h,
dilution by the probability of removing a synapse. Time constants were uniformly
distributed around 7.2 s. Average over 100 trials in each point.

the closest target; the bumps would be strongly attracted to the stored target. For
a large number of targets the behaviour was similar to other line-attractor models,
including fast virtual rotation between the original location and the stimulated
location.

The network was extremely resistant to network inhomogeneity, synaptic noise
and sparse connectivity. Stable, if noisy, bump states persisted both for multi-
plicative synaptic noise where weights were multiplied by uniform random numbers
between 0 and 7 (not shown in figure) and noise injected into the units. Similarly,
the learning time constants could vary over a large range without the loss of bump
states. Dilution of the connections caused a graceful degradation (Figure 6.4).

The network was also resistant to selective removal of connections between units
with distant receptive fields or random removal of connections in specific regions,
although the loss of mutual inhibition enabled the co-existence of multiple bumps
in different regions at sufficient dilution.

An interesting effect was seen when the print-now signal was not completely
turned off during the delay phase, but kept on at 0.1 strength. Strongly activated
neurons tended to link to each other, creating an attractor growing smaller and
sharper (Figure 6.5). This produced gradual decay of some activities and increase
of others, a ramping behaviour similar to what has been observed in unit recordings
in working memory experiments (Fuster, 1989; Romo et al., 1999).
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Figure 6.5. (a) Single stored target, with slow learning (77, = 72 s) during delay
stage. (b) Plot of selected unit activities over time.

6.4.1 Adaptation

With adaptation turned on (g4 > 0) the stability of attractor states became time
dependent.

For low values of adaptation the bump state remained stable and the system
behaved as before. For strong adaptation the bump state instead became oscillatory,
first decaying to a state where most neurons were weakly active and then returning
to the bump shape again once the initially adapted neurons and synapses had
regained their efficacy. This cycle then repeated itself.

For intermediate values of g 4, the network exhibited a stable bump when trained
with one target, while moving between two or more bump states when trained with
several targets (Figure 6.6). Hence it was possible to both have a single stable
state and time multiplexed multiple attractors without having to change the time
constant or strength of adaptation.

The upper limit of the number of targets that could be stored when adaptation
occured appeared to be (for these parameters) approximately 10. For more targets
increasing overlap between the attractors created a band weight matrix with a
single continuous attractor state. Adaptation then caused the delay state to turn
into a continous moving wave instead of discrete shifts between targets. This is
similar to the adaptation-induced instability of bump states in models with pre-
wired band matrices (Laing and Longtin, 2001). For a smaller number of stored
targets the regions of strong local excitation in the weight matrix were separated by
mutual inhibition, producing a barrier for the translation of the bump state from
one location to another.

The network was also tested with several task cycles (cue-delay-reset) in order
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Figure 6.6. Network activity with adaptation, for g4 = 0.35. The bump state was
stable for a single learned target, while it flipped between different locations if two
or more targets were stored.

to check for inter-trial interference. If the imprinting was strong enough previous
memory states were abolished (Figure 6.7(a)). For less intense imprinting traces
of previous memory states remained and would periodically re-appear when adap-
tation was used (Figure 6.7(b)). It is worth noting that an explicit reset signal to
erase attractor states was not necessary if new cues were imprinted strongly enough;
the new cue would erase the old stored information (Figure 6.7).

6.4.2 Non-hebbian plasticity

While the current model has been based on the assumption of the existence of
very fast Hebbian synaptic plasticity, there is currently no clear evidence for the
presence of this in prefrontal cortex. Hence another related model would assume the
existence of a predetermined synaptic matrix (possibly set by long-term synaptic
plasticity) and a fast non-Hebbian change in neuron bias such as spike frequency
adaptation caused by the cue, or synaptic facilitation. One observed phenomenon
that would fit this is the synaptic augmentation observed in prefrontal neurons,
which consists of a 40-60% enhancement of synaptic transmission which can be
induced after 0.3 s stimulation. This has been suggested as a stabilizing factor for
working memory (Hempel et al., 2000).

We used a synaptic matrix based on a continuous attractor and only allowed the
bias (3; to change during learning. When exposed to a cue target the network formed
a bump attractor which persisted. However, the center of the bump described
oscillations around the stored target (Figure 6.8) due to adaptation. When this
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Figure 6.7. Multiple trial cycles. In each trial one cue is learned, remains sustained
and is reset by the arrival of the next cue. To the left is a case without adaptation.
To the right is a case with adaptation where incomplete erasure occurs, and the
network state shifts between the previous four targets. Note the preference for the
most recent target.

network was trained with two attractors activity oscillated between them and their
centers. The focusing effect of having discrete regions of local excitation separated
by long-range inhibition is lacking, enabling the adaptation instability to move the
center of the bump state widely.

6.5 Discussion

We have described an attractor neural network with fast Hebbian plasticity that
performs as a working memory in the oculomotor delayed response task. It exhibits
bump states similar to previous models while being based on synaptic plasticity
rather than a hard-wired weight matrix. The modified connectivity maintains the
persistent activity and stabilises it against noise, distractors and network inho-
mogeneity. Unlike line-attractor models this network can store multiple memory
states, with external cues activating one memory at a time.

In most models to date the maintenance of line attractors requires fine tuning
of network parameters (Wang, 2001; Seung et al., 2000). This network avoids the
problem, and the main parameter issue instead becomes setting learning parameters
to a range suitable for the task at hand, which is far less sensitive. Learning
also stabilises the network against inhomogeneity and noise, making it possible to
maintain bump states even when the individual neurons have different parameters
and connectivity.
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Figure 6.8. Network activity in model with fixed synaptic matrix and fast change of
bias, with adaptation. The attractor states oscillate around the given cue directions.

This is somewhat similar to the models of eye position control and invariant
object recognition described by Seung (Seung, 1996, 1998) where line attractors
are formed through learning. However, in these models the learning is assumed to
occur on a far slower time-scale than the network dynamics. Also, our model is not
based on the assumption that the learned attractors form or approximate a line
attractor; while multiple overlapping stimuli can produce it, it is no requirement
in our model for a functional working memory. It may further be possible that
slower forms of plasticity create an underlying line attractor weight matrix, which
is transiently modified by faster plasticity (von der Malsburg, 1981).

Persistent activity is an integral part of this model. There is no fundamental
contradiction between the hypothesis that persistent activity within cell assemblies
is necessary for working memory and the hypothesis that working memory is stored
by fast changes in synaptic efficacy. Both possibilities can be combined; the activity
is necessary for readout to activate the proper behavioural responses and synaptic
plasticity is necessary or helpful in maintaining the activity.

It has been argued that a good reason to assume that working memory is stored
as persistent activity is that experimental disruption of such activity causes the
animal to make an error (Durstewitz et al., 2000). However, this would also be the
case if the memory was stored synaptically and read out as reverberatory activity.
Then instead of interfering with the storage as such the read out from memory
would be disturbed. Thus, these two hypotheses cannot be distinguished based on
such experimental results.

The existence of sufficiently fast Hebbian plasticity is a basic assumption of this
model. While non-Hebbian plasticity of suitable speed is known (Hempel et al.,
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2000), the existence of fast Hebbian synaptic change in the prefrontal cortex remains
conjectural. Long lasting (one day) LTP at hippocampo-prefrontal synapses can be
induced by trains of five short bursts of 10 pulses at 200 Hz given at the frequency
of the theta rhythm (Doyere et al., 1993), but the time before the LTP is expressed
appears to be of the order of seconds to minutes (Gustafsson et al., 1989; Hirsch and
Crepel, 1990). On the other hand it is possible that there can exist Hebbian effects
within posttetanic potentiation (Bao et al., 1997) and that short-lived Hebbian
effects are just not easily demonstrated in the current experimental setups. Non-
Hebbian fast adaptation like e.g. augmentation is a less radical hypothesis for the
stabilisation of bump states (Hempel et al., 2000), but appears to be insufficient to
adequately maintain bump attractor states against destabilising influences such as
adaptation.

The extension of the basic model to include adaptation enables attractor dy-
namics that moves between the different stored states. Due to the existence of a
single attractor state in the one cue case, the network avoids the destabilising effect
of adaptation reported by Laing and Longtin (Laing and Longtin, 2001). Adapta-
tion acts as an inhibitory current which is preferentially enhanced on the trailing
side of a moving bump state, causing it to drive the motion forward. In this model
this does not occur due to the non-band structure of the weight matrix, unless
enough overlapping memories have been stored to create such a band matrix.

For the same parameter values but with several cues it can also sustain time-
multiplexed activity where the network state jumps between the memory states
during the delay period. This is similar to the switching in the binocular rivalry
model of Laing and Chow (Laing and Chow, 2002) where a “slow” dynamics of spike
frequency adaptation and synaptic depression cause bump states to shift between
two externally influenced positions.

This appears to partially fit results such as (Constantinidis et al., 2001) where
it was found that the presentation of two stimuli (one task relevant, one irrelevant)
led to delay activity in neurons tuned to both locations. If the weight matrix was
of the band form it would not be able to sustain two simultaneous bumps, unless
the connectivity between units tuned to distant orientations were very weak.

In addition to assigning a functional role in working memory for cellular and
synaptic phenomena like plasticity and adaptation, the model presented here makes
several specific predictions:

o There could be inter-trial interference due to incompletely erased synaptic
changes. Mistakes should tend to confuse the current and a similar previous
target, as has been observed (Bichot and Schall, 1999). The presentation of
several targets at the same place followed by a target nearby should lead to
a probability of mistake increasing with the number of times the first target
was shown and decreasing with the distance to the second target.

e There should exist a print-now signal resetting the synaptic state of the net-
work concurrent with the reset of neuron activity at the end of the task,
regardless of success or failure.
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e The shape of the input to the working memory network determines the mem-
ory state shape. Hence a modification of the form of the input should result in
a corresponding change in the delay activity. If, for example, the previously
sharply spatially tuned input was replaced with a broadly tuned input more
cells would become less active in the delay period. This would not happen
in a fixed synapse model, where the bump shape is set by the pre-existing
synaptic structure.

e A prediction and a possible problem with this kind of model is the lack of drift.
Although it remains uncertain whether drift of bump states plays a major role
in the task (Wang, 2001), the difference between the saccade target and the
achieved target in oculomotor tasks appears to increase monotonically with
delay time (Funahashi et al., 1989; White et al., 1994; Ploner et al., 1998).
In the current model it could be due to the presence of other processes, such
as a high intrinsic noise level combined with weak learning during the delay
period.

Since the network is not based on pre-set synaptic strengths, it can be gen-
eralised to arbitrary attractor states. For example, it can be used to learn from
a 2D retinotopic map, enabling the persistence of 2D bumps of activity at loca-
tions learned during the cue period. The attractor states could also be distributed
representations as in regular attractor networks.

Instead of using a specific kind of network for working memory and another
for long-term memory, our model suggests the possibility that the cerebral cortex
may be using a canonical network architecture with a spectrum of learning time
constants for different functions. Such general networks would become modality
specific due to their afferent and efferent connections rather than any particular
architectural features, and shift their function due to task demands. This could
explain the apparent discrepancy between different studies on the domain specificity
of PFC (as discussed in (Undergleider et al., 1998)).

Though we investigated within the context of a specific computational model
(BCPNN) we expect the qualitative aspects of our results to be largely independent
of the exact simulation model. A possible future extension would be to implement
the model using spiking neurons to further examine its generality and properties,
such as the effect of spike synchrony in memory reset and the effects of AHP mod-
ulation on network dynamics.

In conclusion, we have shown that fast Hebbian learning is sufficient to reproduce
many properties of a working memory task which has previously been modelled in
terms of persistent activity states in a fixed connectivity attractor network. It
remains to be examined to what extent plasticity is necessary to maintain stable
activity and how quickly it can be modulated to fit the task.



Chapter 7

Mental Ageing

Plastic processes in the brain occur throughout the lifespan of an animal, but their
nature and intensity vary over time. During development and infancy extensive
neurogenesis and synaptogenesis occur, linked with experience-dependent synap-
tic pruning and myelinization. Beyond adolescence, learning plasticity appears to
change, possibly due to declines in neuromodulator levels and changes in receptor
expression. The overall theme appears to be a steady decline of plasticity from a
high level at infancy.

This paper examines a possible evolutionary explanation for age-related episodic
memory impairment as antagonistic pleiotropy, the phenomenon that genes with
deleterious effects at late ages can be actively selected if they have beneficial effects
at young ages. Senescent traits evolve because they have only weak effects on fitness
(Medawar, 1952; Rose, 1991; Rose and Mueller, 1998). The effect of a phenotype
trait on an individual’s total fitness declines monotonically with the age at which it
is expressed (Hamilton, 1966). Under a wide variety of conditions a modest fitness
benefit early in life can off-set a larger disadvantage later in life that only affects
the end of reproductive life (Charlesworth, 1980).

The force of natural selection in humans becomes essentially zero after age 40
(Rose and Mueller, 1998, fig 1, based on data from Charlesworth and Williamson
(1975)). Hence changes in brain plasticity that are adaptive for young individuals
and that continue beyond maturity to cause impairments in learning would have a
net fitness benefit and be selected for.

7.1 Age-Related Memory Impairment

Memory decline in aging humans is associated with both disuse, disease and aging
per se. Factoring out disuse and disease, there still appears to exist age-dependent
memory impairment although the individual variations are large (Zec, 1995; Small,
2001).

111
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Many age differences in memory can be explained in terms of a decreased mental
speed that limits the encoding efficiency and affects decision times (Cerella, 1985;
Korsnes and Magnussen, 1994). Aging problems in long-term memory are largely
due to problems in encoding and retrieval rather than storage, and rates of forget-
ting have not been found to be different in old and young adults (Kaszniak, 1986;
Zec, 1995).

The variance of memory performance in aging samples increases with age, sug-
gesting that memory decline is not inevitable. However, twin studies show increased
correlation between memory measures with age. This suggests genetic factors pre-
disposing towards age-related memory impairments (Rapp and Amaral, 1992; Mc-
Clearn et al., 1997; Small, 2001; Nilsson et al., 2002).

fMRI data from a feature binding task shows a greater activation in the hip-
pocampus of young but not old adults, suggesting that the decline in such tasks
may be due to hippocampal dysfunction (Mitchell et al., 2000).

Age-related volume changes of different brain regions are observed (Jernigan
et al., 2001). However, there is considerable controversy over the presence and role
of neuron and synapse loss in the hippocampus and cortex in normal aging (Mor-
rison and Hof, 1997; Scheff et al., 2001; Terry and Katzman, 2001); the consensus
appears to be emerging that cell loss is not a major cause of memory impairment
outside neurodegenerative disorders. On the other hand, cell loss appears to occur
in the subcortical modulatory systems (de Lacalle et al., 1991).

During aging human neuromodulation changes. Striatal dopaminergic function
averages a 6%-10% decline per decade (Scherman et al., 1989; Rinne et al., 1993;
Wang et al., 1998) and age-related dopamine activity decreases appears to impair
both motor performance and frontal cognitive functions (Volkow et al., 1998; Kaasi-
nen and Rinne, 2002). Bickman et al. (2000) found that dopamine Dy receptor
binding was a more important factor than chronological age in predicting variation
of perceptual speed and episodic memory performance. Since prefrontal function is
important in cognitive function and sensitive to neuromodulatory changes (Arnsten,
1998) this is likely to contribute to age-related impairments.

Rat studies have produced roughly similar results, complementing the human
cognitive aging perspective. There is a decline in temporal processing speed for
sounds (Mendelson and Ricketts, 2001) similar to human processing slowing. Neu-
rodegeneration occurs both in the hippocampus and among the basal forebrain
cholinergic neurons of the aged rat, but hippocampal neuron loss is not inevitable
and performance does not correlate with the loss (Rapp and Gallagher, 1996). Aged
rats exhibit stable and accurate place fields in the hippocampus during a learning
episode, but between episodes they are often rearranged (Barnes et al., 1997). Aged
rats with memory impairments show encoding of only part of available context in-
formation in the hippocampus, and when cues or tasks change they show decreased
plasticity (Tanila et al., 1997; Oler and Markus, 2000). Overall there appears to be
a decrease in ability to bind context with internal representations.

The threshold of hippocampal LTP increases with age while the LTD threshold
decreases, and LTP decay rate becomes faster (Foster, 1999). Comparisons between
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spatial memory performance and LTP decay rate in young and aged rats showed
similar relative differences (Barnes and McNaughton, 1985).

Expression of NMDA receptors decline in a subtype-dependent manner in both
hippocampus and the cortex (Sonntag et al., 2000). Especially relevant is the
decline of expression of the NR2B subunit with age (Clayton and Browning, 2001).
Young animals express NR2B almost exclusively compared to NR2A, and the ratio
decreases during postnatal development (Sheng et al., 1994). Overexpression of the
subunit causes memory improvements (Tang et al., 1999), likely due to the slower
kinetics of NR1-NR2B heteromers inducing a more reliable LTP (Monyer et al.,
1994).

There is a decrease in cholinergic synaptic transmission over rat lifespan (Shen
and Barnes, 1996) and aged rats with memory deficits show a decline in neu-
rotrophin signalling in the basal forebrain (Sugaya et al., 1998). Nucleus basalis
lesions caused a more severe impairment in middle-aged and aged rats than in
young adult rats, suggesting that the young rats have compensatory responses that
are lost with aging (Wellman and Pelleymounter, 1999). ACh is most likely in-
volved in attention and arousal rather than memory per se in these tasks, and the
interactions between modulator systems can ameliorate or worsen the impairments
(Shen and Barnes, 1996). Lesion experiments show that diffuse cell loss in the basal
forebrain cholinergic system most closely mirror aging related memory impairments
(Gallagher and Colombo, 1995). Reaction times and response speeds become more
variable in rats with dopamine decline (MacRae et al., 1988).

These results imply that cognitive aging may at least partially be due to decline
in neuromodulatory tone and receptor expression rather than structural changes.
This decline affects brain systems important for memory encoding and manage-
ment such as the hippocampus in rats and humans and the prefrontal cortex in
humans. The different neuromodulatory systems change at different rates both
within the same individual (causing differential changes between memory systems)
and between individuals (causing increasing performance variance). This decline
may be due to genetic factors. In addition, the changes in subunit composition of
the NMDA receptor appears to be a regular progression rather than the result of
accumulation of errors.

7.2 Episodic and Autobiographical Memory

Episodic memory was originally defined in terms where recall brings with it a sense
of time and place of the recalled experience (Tulving, 1972). This is commonly
combined with the idea of episodic memories as autobiographical memory, memories
and memory functions that relate closely to a persons own narrative. Nevertheless
researchers in the autobiographical memory field often distinguish between the two
kinds, and may even regard them as different memory systems (Conway, 1990). In
the following we will not make any strict distinctions between the two kinds, but
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rather focus on the similar properties of being distinct experiences learned through
one-shot learning that are recallable across the lifespan.

The main property of autobiographical memory of interest here is the likelihood
of retrieval of experiences from different time periods using cued and free recall.

One of the main features of autobiographical memory is the differences in the
frequency of reported autobiographical memories depending on their age (Conway,
1990; Rubin et al., 1998). Typically such frequency plots show a low number of
accessible memories from the first years of life (infantile or childhood amnesia), an
increase in frequency from a particular age range in the second and third decades
of life, the “autobiographical bump”, and a recency effect for memories from recent
years that declines as a power function (Rubin and Schulkind, 1997). The bump is
statistically detectable in 50-year-olds and above, but not in 40-year-olds and below
(Chu and Downes, 2000).

Normally autobiographical memories are triggered in experiments using verbal
cues. If odour cues are used instead, the peak occurs at 6-10 years and then
decreases for higher ages. The peak is also higher for the odour cues than the
verbal cues (Chu and Downes, 2000).

Childhood amnesia appears to be a universal phenomenon, where autobiograph-
ical memories of early childhood become inaccessible. It has been explained in terms
of repression, different self-representations, a specific amnestic period or cognitive
development (Pillemer, 1998). Social and cultural factors can affect the extent of
amnesia, likely due to how much parents discuss early memories with their children
(MacDonald et al., 2000). Part of early infantile amnesia is likely due to neuro-
logical immaturity. Parts of the hippocampus such as the dentate gyrus are still
developing years after birth, and hippocampal-dependent learning is absent before
18-24 months of age (Mangan and Nadel, 1990; Newcombe et al., 1998). At the
same time the children are clearly able to do semantic learning such as language
acquisition, showing that different memory systems mature at different rates.

Autobiographical memories appear to be linked to prefrontal brain systems.
In a fMRI study by Maddock et al. (2001) the caudal part of the left posterior
cingulate cortex was most strongly activated during retrieval of autobiographical
information cued by names. Maguire et al. (2001) observed increasing activity in
the ventrolateral prefrontal region with increasing recency of autobiographic and
public event memories (but not the hippocampus).

7.3 Cognitive Aging Models

Most models of cognitive aging are qualitative psychological models rather than
quantitative computational models. One strand of models has been based on the
concept of diffusely distributed neuron death causing cognitive impairments even in
healthy aging (Coleman and Flood, 1987). Birren (1965) proposed a general slowing
of processing speed as a hypothesis of the primary cause of cognitive aging. Welford
(1965) discussed increased neural noise as another potential cause. The information
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loss model of Myerson et al. (1990) explains the slowing due to increased loss of
information at each processing step.

Neural network models of synaptic deletion and compensation have been studied
as models for Alzheimer’s disease, exhibiting gradual degradation of performance
and relative sparing of old memories compared to recent (Ruppin and Reggia, 1995).
While based on assumptions of heavy neuron/synapse losses, the basic mechanism
could be applied as a model for memory decline due to cell death. The compensatory
mechanisms could contribute to the inconsistencies found in many studies between
memory function and cell loss.

Braver and Barch (2002) present a model based on the PDP framework. In-
formation is held within an active recurrent memory linked to a stimulus-response
pathway. A dopamine signal acts both as a learning signal and a gating signal,
regulating how much the active memory affects and is affected by the rest of the
system. Impairments in these signals cause impairments in context processing,
which fit psychological and neuroimaging studies. Proper cognitive control is also
likely to be important for long-term memory encoding.

The model of Li et al. (2001) is also based on the assumption of decreasing
neuromodulatory tone, but instead treats it as a declining gain of the transfer
function in network units (although a change in gain in a backpropagation neural
network is equivalent to a scaling of initial synaptic weights and learning rate (Li
and Sikstrom, 2002)). This reduces the distinctiveness of internal representations
and increases neuronal noise, causing impairments in many cognitive domains as
demonstrated in a series of neural network simulations (Li et al., 2001; Li and
Sikstrém, 2002).

7.4 Evolutionary Neuroscience

Can there be an evolutionary account for cognitive changes in aging? If information
acquisition correlates with reproductory fitness at a fertile age, then the learning
rate should change so as to maximise the amount of relevant stored information in
the reproductory period.

Since this number of experiences is extremely high, and likely far beyond the
capacity to store individually, only selected experiences will be stored. This can be
achieved by temporary print-now signals (see section 2.1.2 and chapter 4). However,
even if only relevant information is stored it will tend to disrupt earlier information.
This is especially important for episodic memory, which has to be laid down quickly.

If the learning rate is high early in life when the most new information arrives
and then decreases, accidental erasure of old information would be minimised.

The “grandmother/grandfather” hypothesis that long-lived grandparents im-
prove the fitness of their grandchildren might imply that there is an additional
benefit to having a few slow-learning, slow-forgetting elderly within the family
group. They would maintain knowledge from their own youth that could be bene-
ficial to their kin when rare situations occur (Mergler and Goldstein, 1983; Rubin
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et al., 1998). However, this paper does not deal with kin selection effects, so this
intriguing hypothesis will not be included in the model.

The current hypothesis is that a network with plasticity decreasing with time at
a suitable rate will maximise the total amount of information that can be recalled
at a certain age. Evolution would favour organisms that maximise the total amount
of available information at reproductive age within the constraints of their nervous
system (whose capacity is assumed to be already given; the plasticity traits would
be secondary to the anatomical traits that determine the disposition of the nervous
system).

At this optimal rate, childhood amnesia will occur due to the plastic loss of the
earliest years, and aging-related memory impairments due to lack of plasticity at
ages beyond the normal reproductive and child-rearing age.

7.5 Optimal Learning Rate

In the following, we develop a simple toy model of a plastic memory that can be
analytically solved in certain cases.

Let I(t) be the strength of the memory traces of information learned at time 0.
The learning rate a(t) > 0 is variable, and affects I(t) through decay proportional
to a(t) (corresponding to interference, inhibition effects and trace decay):

I'(t) = —a(t)I(t) (7.1)
The original strength of the memory trace depends in a nonlinear way on «(0):
1(0) = f(a(0)) (7.2)

where it is assumed that f(«) > 0 and monotonically increasing. The general
solution of 7.1 and 7.2 is

I(t) = f(a(0))e™ Jo alwau

The total amount of memory trace that has been acquired at time 7" from traces
starting at time 0 and onwards is

T T
J(T) = /0 Fla(t))e Je awdugy (7.3)
- / " fla(p)elt s atwaugy (74)
0

Let
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Equation 7.4 becomes:

ﬂT%=ATﬂ3@»J“*W”m (7.5)

We want to maximise J(T') for a fixed T. This is a variational problem that
can be solved with the Beltrami identity: if we seek to extremise | f(y,y’)dz the
extremal y satisfies f — /' ;5 . = C for some constant C. Applying this to 7.5 we
get:

[F(8'(8) =B () (8 (1))’ =PD) = ¢ (7:6)
Since 5(T) can be taken as a parameter it can be included into C, leaving
[F(8'(8) = B () (8' (1))’ = C (7.7)

7.5.1 Convex f

An important special case occurs if f is convex, f” < 0. ¢’(*) is increasing, which
implies that the expression within the brackets must decrease over time in order to
make the entire expression constant. Differentiating and using «(t) = §'(¢) we get

f'la(®)a! (t) = o' (1) f'(a(t)) — alt)a’ (1) f" (elt)) <O
a(t)a’(t) " (a(t)) > 0

Since a(t) > 0, a’(t) < 0. Hence for a convex learning efficacy f, the optimal
learning rate must decrease over time.

The response to a learning stimuli commonly exhibits a convex form, which can
be represented by f(a) = oF for 0 < k < 1. Putting this into 7.7

[(8)F = k(5)]e” = C
(1-k)(B)re” =C

(B)re? =C/(1-k)

PRds = (C/(1 —k)Yrdt
/eﬁ/kdﬁ _ /(0/(1 k) Vrar

keP/k = (C/1 - k) t+ D

(C/(1 —k)Y*t+D

p(t) = klog| . ]
Since a(t) = B'(t) we get

k(C/(1 = k)V/*
(C/(1— k)Y t + D

aft) =
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lated memory trace
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Figure 7.1. Total memory trace J(T) at 25 years of age for a(t) = ag2~t/7s.

C and D are arbitrary constants, so the general form is

k

at) = . (7.8)
where E is a combined constant.

Hence, for learning responses of the form f(a) = o* 0 < k < 1 the optimal
learning rate has to decrease as 1/t¢. Also, for more sharply convex learning efficacies
(small k) the learning rate should decrease.

For learning responses of the form f(«) = log(a+1) such as the one in chapter 4
the corresponding differential equation has no solution in closed form. However,
numerical solution shows that «(t) declines fast, and can be approximated with
an exponential curve. The effect of using this is shown in figure 7.1. J(25) has a
maximum for 75 & 6 years, ag ~ 0.25, although the values do not change much

along the ridge.

7.5.2 Simulation Model

We compared the model of previous section with a neural network simulation of
lifespan change of memory plasticity using a BCPNN. The plasticity change was
represented by an decrease of the learning rate (the inverse of the time constant
TL):

aft) = a2V (7.9)

where « is the initial plasticity and 75 the time constant of plasticity change.
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This network model abstracts both the size and time dynamics of memory. The
network used 100 units organised into 10 hypercolumns and was exposed to one
random pattern to store for each “year” of life. These patterns represented all the
experience of the year.

The fast change in time constant (s = 10 years) is very different from the
far milder decline in dopamine receptors observed (= 10% per decade). However,
mapping from actual synaptic plasticity to this abstract network is not straightfor-
ward. The plasticity in the model corresponds to the combined effect of plasticity
and interference between a very large number of patterns, while the learning pro-
cesses in the brain are dependent not just on individual receptor numbers and
their plasticity-modulating effect but also their network effects on a long chain of
memory systems. The functional relationship translating receptor numbers or mod-
ulator concentrations into a general learning rate of the entire brain is likely highly
nonlinear, even when leaving out the inverted-u curve effects of high concentrations.

To store m times as many patterns the network needs to be approximately m?/3
times larger (Sandberg et al., 2002; Johansson et al., 2001). A network that can
store one pattern per day would be at least 51 times larger (N = 5100) and for a
network storing one pattern per minute 6512 times larger (N = 651,200). At the
same time the equation 7.9 would be rescaled as a,,(t) = ap2~/™7s. However, as
long as the network is not operating close to its capacity limits the dynamics would
be essentially unchanged. Similarly, a smaller network learning fewer patterns can
be used as a model of the larger, more realistic network.

The form of plasticity change in equation 7.9 was selected due to the similarity
to neuroanatomical results suggesting a rough exponential decline of receptor levels.
The rate of decline should be interpreted as a composite effect of actual memory
trace decline, interference and encoding variation. The exact value does not map
directly to modulator and receptor levels.

Cued recall was performed from initial states with half of the hypercolumns
randomly activated, and the success condition was more than 0.9 overlap after
convergence for 2.0 time units. Free recall was performed using convergence from
random initial conditions, and if the system state after convergence overlapped
more than 0.9 with a stored pattern it was regarded as recalled. Free recall using
adaptation as described in chapter 5 was also tested, and performed similarly.

7.5.3 Simulation Results

Figure 7.2 shows the performance at 25 years of age of cued and free recall as a
function of oy and 75. The ridge represents the optimal combination of initial
learning rate and decline. The maximum of the cued recall performance is a curve
where all patterns are recalled correctly; it is indifferent to the exact choice of «q
and 7g. For free recall there is an optimum for very fast learning rates declining very
quickly. This is very similar to figure 7.1, showing that the simple mathematical
model and the network give nearly the same predictions.
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Figure 7.2. Learning performance at 25 years of age as a function of o and
Tg for cued recall and free recall. Performance was estimated by the fraction of
successful cued retrievals and free recalls. Average of six simulations; for free recall
100 attempts were made.
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Recall was tested at age 25, 50 and 80 years for ag = 0.4, 7¢ = 10 (Figure 7.3).
In general cued recall was able to retrieve most memories with high probability from
a noisy cue, with the exception of early memories and age-related memory decline
at old age. Free recall tended to focus on a subset of memories peaking between
20-35 years of age. Cued recall also exhibited a bump, but only when tested at
higher ages.

7.6 Discussion

The network model presented here is a simple extension of the one studied in previ-
ous chapters of this thesis. It is small and extremely simplistic, but it does account
for some features of autobiographical memory as a consequence of an evolutionary
account of optimal learning. It leaves out the many effects of disuse and disease, as
well as the complex interactions of memory systems, repetition and social feedback.
Still, the analytic model shows that under a wide range of conditions a declining
learning rate would be favoured by evolution and the neural network simulation
manages to produce a plausible autobiographic memory curve exhibiting childhood
amnesia and the autobiographical bump.

The recall curves fit well with the early and middle part of empirical autobio-
graphic recall curves, but lack the observed recency. This lack may be due to the
lack of a medial temporal lobe in the model. If the MTL is assumed to play a role in
“recent” (tens of years) episodic memories (as is suggested by Nadel and Moscovitch
(1997)), then it could act as a intermediate-term “add-on” to the long-term corti-
cal memory modelled here similar to the short-term memory in Johansson (2001).
Such an extra short-term memory can add its capacity to a long-term memory,
contributing to the kind of recency curve observed (Rubin and Schulkind, 1997).

The highly nonlinear decline in learning rate derived from theory and produc-
ing autobiographic curves appears to fit observations of relative rapid decline of
dopamine transporters during young adulthood followed by less rapid declines dur-
ing middle age Mozley et al. (1996). This would also fit the observation that
noradrenergic innervation in rat frontal cortex decline at an earlier stage of aging
(9-13 months) but not at a later stage (13-25) (Ishida et al., 2001).

This antagonistic pleiotropic model suggests that the late life decrease in neuro-
modulators and general plasticity should not just be due to random late-life genes
that are not selected away, but a continuation of the genetic programs that underlie
the plasticity changes in early life. A “wear-and-tear” model would predict memory
impairments due to random cell loss and expression changes with no pattern relat-
ing to memory. This model instead predicts a specific decline in memory-related
systems.

How can this hypothesis be tested or falsified? One approach would be to use
mice overexpressing the NR2B gene (Tang et al., 1999) and study their lifespan
learning. The NR2B mice would have a higher overall learning rate leading to a
greater degree of interference, reducing their ability to recall remote events.
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Figure 7.3. Cued and free recall of memories at 25, 50 and 80 years of age.
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The genetic regulation of the NR2B:NR2A ratio should remain active across the
lifespan, decreasing it at a speed dependent on the age of reproduction. Hence inter-
species comparisons of this system should show a dependency on reproduction age
rather than maturation age. Similarly the factors determining the neuromodulatory
decline should be at least partially under genetic control and dependent on the
lifecourse of the species.

The fitness (as measured in 7.2) appears to have a relatively flat optimum,
suggesting that the fitness disadvantage of mutants with slightly different rates or
shapes of plasticity decrease might be relatively slight. This would predict that the
variation of such traits could be relatively large.

Another prediction is that periods with high levels of neural plasticity, for exam-
ple produced by high neuromodulator levels, would exhibit an increase in frequency
of autobiographical memories. This would in a sense be similar to the plasticity
modulation modelled in chapter 4 projected on lifelong learning, and would be able
to cause similar inhibition effects. A study of Vietnam war veterans hints at such
an artificial bump effect in veterans with PTSD (McNally et al., 1994), although
interpretation of the data is complicated by social and psychological factors.

Many extensions of the model can be explored. An important extension of
the current model would be to include the effect of reinstating earlier information,
allowing it to re-imprint itself in memory. The overall effect is a strengthening
of already strong or often accessed memories and a weakening of weak or rarely
accessed memories. Reinstatement is likely a significant factor both in shaping the
general autobiographical memory curve and in childhood amnesia.

This model has treated memory as a learning system black box with no internal
structure. More advanced models are possible, and could be used to examine the
differential effects of aging on different brain regions and memory systems. A simple
parallel model with memory subsystems declining at different rates could easily
model the different frequency curves observed for verbal vs. odour cues in Chu
and Downes (2000) by assuming that the plasticity of the odour-related memory
systems decline faster than for verbal systems.

The current model does not account for early development well, since it does
not include the gradual emergence of representations. A more realistic model would
consist of a hierarchy of subsystems undergoing maturation at different rates where
higher level subsystems require functional low-level systems for their own function.
The organism would gain a fitness benefit from a declining learning rate in the low-
est subsystem (corresponding, perhaps, to perceptual representations) that quickly
learned a stable representation. The second subsystem would be largely useless
as long as the first subsystem had not stabilised its representations, and hence it
would be adaptive for it to have a slower or delayed maturation rate. But once the
lowest subsystem had matured, the learning situation would again be similar to the
assumptions in the model, and there would be a fitness advantage in a declining
learning rate. This scheme can be continued at increasing hierarchical levels, each
with a delay or slowing of learning rate decline relative to the previous level. This
would be especially relevant for modelling early development and autobiographical
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mermory.

The methodology of network models such as that of Li et al. (2001) are com-
plementary to this model. They take the modulatory decrease as the basis and
construct a bottom-up model of how the decrease in gain causes memory impair-
ments. This model starts with evolutionary assumptions and derives a declining
learning rate over lifespan, which might be expressed in terms of decrease in neu-
romodulation. There is no fundamental incompatibility between the models in this
respect. Rather, the present evolutionary perspective seems to be another possibil-
ity of cross-level integration in sensorimotor and cognitive aging that fits with the
program (Li and Sikstrém, 2002).



Chapter 8

Discussion and Conclusions

This thesis started from a heuristic derivation of a neural network and learning rule
from statistics, and then gradually extended its functionality by enabling parame-
ters to vary dynamically or adding extra projections. This family of networks were
then compared to other models and used to describe different memory phenomena.
A main issue of study was whether there exists necessary architectural differ-
ences between neural networks involved in different memory systems such as work-
ing memory and long-term memory. A secondary issue was to develop a network
that could act as a general robust building block for more complex models. The
aim was to be able to construct “networks of networks” of simpler memories that
interact in adaptive ways that can be used in more elaborate models of the brain
and in “artificial nervous systems” for autonomous learning robots and agents.

8.1 Encoding and Retrieval

We have seen how manipulation of learning time constants within a simple neural
network enables a wide spectrum of effects. The main finding was that the same
basic network architecture can act as a model of working memory, intermediate
memory or a long-term memory depending on its level of plasticity. The plasticity
can also be modulated to achieve enhancement of certain memories, both on a short
behavioural timescale and over long timescales in order to optimise lifespan learning.
These forgetful networks can interpolate between a mode where the number of
learnable memories depends on the level of plasticity and a mode where capacity
has an upper bound dependent on network size and catastrophic forgetting occurs
if they are overloaded.

Is the brain limited by plasticity or size? Catastrophic forgetting is not ob-
served even among the (healthy) very aged, suggesting that either the number of
distinct experiences during a human lifetime is smaller than the capacity of corti-
cal memory or that we have some plasticity limitation. Events occurring less than

125
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100 milliseconds apart are usually perceived as simultaneous (VanRullen and Koch,
2003), and introducing new attractors in an online learning network such as the one
in chapter 5 requires waiting for the current attractor to adapt, producing roughly
the same timescale. Assuming on the order of ten memories per second produces an
upper bound of the order of 101 on the number of memories in a human lifetime.
This could be fitted into a network of 108 minicolumn units (assuming on the or-
der of 10'° cortical neurons (Pakkenberg and Gundersen, 1997) with minicolumns
containing some 102 neurons). If they obey the same capacity scaling as a BCPNN
with v/N hypercolumns the total capacity would be on the order of 10'° patterns.
Hence there is likely no strong size limitation, since it is unlikely that all information
is retained or even encoded. On the other hand encoding requires plastic change
of the cortical networks, and since most learned experience — in order to become
useful — requires connecting with or adjusting prior knowledge there is likely a great
deal of inter-mnemonic interaction between memory states. Hence the real limiting
factor of human memory (beside lack of encoding of many experiences) may be the
slow change of synapses subjected to noise and non-specific modulatory input.

The mental aging model in chapter 7 is based on this assumption. Assuming
that cortical plasticity rather than space limitations is the main cause of forgetting,
it explores the optimal learning rate over the first part of a lifespan and extrapolates
memory beyond the reproductive age, finding bump-like effect on memory similar
to autobiographical memory. Assuming a size-limited brain would instead lead to a
learning rate geared towards preventing catastrophic forgetting before reproductive
age but maximising the information content at that age, implying a rapid mental
decline at middle age not observed in humans.

While encoding of information into the network can be done in only one way,
retrieval can be both by cued recall, free recall or through adaptation. As shown
in chapter 3, 4 and 5, all three retrieval methods show roughly the same response
to modulation of encoding strength. The size of the basin of attraction determines
the amount of noise that can be removed in cued recall as well as the likelihood
of ending up in the pattern due to recall from a random initial state and the time
spent in the corresponding quasi-attractor during adaptation. Hence control of the
size of the basins through plasticity modulation can regulate the strength of the
memory traces, a function that can be important in determining the likelihood of
retrieval, lifespan of memories and how much they are reinstated during consolida-
tion processes.

The introduction of adaptation and the resulting quasi-attractor dynamics en-
ables a more complex retrieval process which is more sensitive to external input and
overlaps between different stored patterns. It also can act as a reinstatement system
and allows on-line learning interleaved with recall. The system is still controlled
by a small number of parameters: the gain of the different projections, the time
constants of learning and adaptation and the auxiliary A\¢. Using these parameters
the formation and control of attractors (or rather, their basins of attraction) can
be regulated and through them the dynamics of the system.

While the fast plasticity in the adaptation model is purely a phenomenological
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model of synaptic and cellular adaptation, it is an integral part of the working
memory model of chapter 6. Here fast Hebbian plasticity is used to form a working
memory able to reliably store information over behaviourally relevant timescales.
While the model still lacks biological verification it shows how a simple assump-
tion can produce a network exhibiting complex dynamics that other ring attractor
models have to fine-tune.

8.2 BCPNN as a Memory Model

Attractor neural networks are plausible models of memory since they are naturally
associative, instantiate the cell assembly hypothesis and fit the highly recurrent
cortical architecture. The convergence to an earlier learned attractor state has
many similarities to Gestalt perception and the reconstructive aspects of memory
retrieval. Drawbacks for attractor memory models have been catastrophic forget-
ting, separation of learning and recall phases, identical encoding strength and their
lack of dynamics beyond convergence. In this thesis these drawbacks have been
ameliorated for the BCPNN family of networks by modifying the basic network or
learning rule in various ways. Each step has been motivated by a perceived draw-
back as a memory model or the need for a particular feature, and have each been
constrained to or inspired by biology. Incremental learning fits the reversible nature
of LTP/LTD, the phenomenological adaptation model used mimics certain forms of
cellular adaptation and synaptic depression and plasticity modulation fits theories
of memory modulation. While this does not guarantee that the resulting models are
correct models of biology, it does give them a link to biological plausibility without
sacrificing the original level of abstraction.

The BCPNN family of memory models is attractive due to their direct interpre-
tation in terms of probability estimation. Learning consists of updating probability
estimates of external or internal events, while the flow of activity approximates
inference. This can be viewed from a top-down perspective as a model of memory
and plausible reasoning (Jaynes, 1996).

The requirement of synaptic plasticity or adaptation at the timescale of network
dynamics used in the adaptation and working memory models removes us from
much previous theoretical work in which neural dynamics and synaptic plasticity
has been assumed to be uncoupled since they operate on very different time-scales.
This was formulated by Caianiello as the “adiabatic learning hypothesis” (Caianiello,
1961, 1989) and removing this assumption makes theoretical analysis considerably
harder. However, we know today that neurobiological processes do occur on a
continuum of timescales from milliseconds to years with no gaps suitable for strict
uncoupling.

One of the main drawbacks of the BCPNN approach is that on the way from
Bayes’ theorem to a functioning network assumptions and additional mechanisms
are introduced making mathematical analysis intractable. The nonlinear summa-
tion of dendritic contributions, the deviations from the independence assumptions
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as well as the normalisation deflect the normal tools of analysis and force a more
empirical approach to exploring the properties of the network. This makes much of
this thesis a prelude to experimental mathematics rather than a theorem-proof ex-
position. The results demonstrated show many intriguing possibilities that remain
to be formalised and throughly explored for their own sake, regardless of applying
the network to memory models. For example, a deeper understanding of the sta-
tistical mechanics of BCPNN and its representational capabilities still remains to
be elucidated.

However, as demonstrated by the simplified models of chapter 4 and 7, the
properties of the network can be described phenomenologically in useful ways that
enables predictions about the network behaviour. Again this points at the benefit
of having models at different levels of abstraction.

Overall the BCPNN has with relatively minor modifications been able to func-
tion as different kinds of memory systems, reproducing not just the expected
timescale of storage but also other properties. This suggests that there is no nec-
essary architectural difference between different memory systems, at least not the
systems that have been studied here (working memory, intermediate memory, long-
term declarative memory). This answers one of the main questions posed in the
thesis and also opens up for building more complex structures from standard build-
ing blocks.

A number of simple networks are found in many brain areas and circuits, espe-
cially pattern associators, autoassociative networks and competitive networks (Rolls
and Treves, 1998). Although these have very different functions they can be derived
as phenotypes from the same model of genetic evolution (Rolls and Stringer, 2000).
It is interesting to speculate that their functions may partially be derivable from
the same architecture through different modulatory inputs, explaining how the cor-
tex achieves its multifunctionality. Even if the number of synapses onto different
neurons from different projections might not be the theoretically optimal values
for a particular function in such a multifunctional network, there would likely be a
fitness benefit to an organism living in a changing environment in having a “stan-
dard cortex” since the organism could adapt it to the environment and changing
demands without the need to have a rigid specialisation.

8.3 Current Work

Analysis, extensions and application of the BCPNN model has been ongoing, and
the results described in this thesis cover only part of this field.

One current area of research is applying the BCPNN to reinforcement learning
and other learning paradigms. The BCPNNRL system of Johansson and Lansner
(2002b) and Johansson et al. (2003) consists of several populations of BCPNN units
representing world state, rewards and actions. Despite being derived in terms of
unsupervised learning, preliminary results show that the BCPNN components can
be combined into a reinforcement learning system with a performance comparable
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to Monte Carlo learning and the Associative Reward-Penalty algorithm. BCPNN
has also been applied to classical conditioning, where it reproduces a wide range of
typical experiments such as extinction, blocking, inhibition and secondary condi-
tioning (Johansson and Lansner, 2002a).

An important part of models of semantic memory is category learning and
clustering. Originally explored in Levin (1995), it was extended to clustering based
on varying the learning time constant and )y (Gars and Tamsen, 1999) and gain
(Eriksson and Lansner, 2003). These investigations have shown a rich clustering
dynamics that can be regulated in several ways, including biologically plausible
mechanisms such as gain and plasticity level during encoding.

Detailed cortical network models with spiking neurons and column structure
are also being investigated, connecting the BCPNN architecture more closely with
biological reality. In these models more biologically inspired cell models are used
to achieve the properties of BCPNN units and hypercolumns.

The heuristic derivation of chapter 3 works well for spiking units, although the
learning rule needs to define an additional timescale for spike coincidence. This
can easily be done in the incremental framework by using higher-order exponential
smoothing: one smoothed estimate of unit activity is used as the input to another
estimate, which in turn may be input to a third and so on. This approach was
the basis for the phenomenological model for spike-timing dependent plasticity of
Wabhlgren and Lansner (2001).

In a network unit activities can be used to drive Poisson-spiking output rather
than rate codes, and preliminary experiments show that spiking BCPNN networks
function well. Another benefit of a spiking rather than rate coded BCPNN is that
the update equation (and efficient parallel implementation) becomes simpler. If
one unit at a time is assumed to be active within a hypercolumn, only one term
in the inner sum of equation 3.8 will be nonzero and the update can be viewed as
summing log-weights to the support (Lansner and Holst, 1996).

8.3.1 Networks of Networks

Rather than being a homogeneous network the cerebral cortex consists of intercon-
nected subsystems organised in more or less hierarchical patterns Scannell et al.
(1995). Different memory systems also appear to form relatively dissociable groups
which act together in cognition. Hence it is natural to move beyond single network
models and study models where different networks are linked to each other.

In networks of buffers and memories such as the ones discussed by Baddeley
(2000) it is necessary to have stores that do not distort incoming information ac-
cording to old information but still take advantage of existing information. Simple
BCPNN models of connected short-term and long-term memories show the ability
to both learn quickly and retain information for longer, as well as perform simple
binding between items in STM and LTM (Johansson, 2001).

Information transfer between network modules is another area worth exploring.
When a set of items are learned by a memory store their encoding strength will be
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dependent on the number of times they have been shown, which affects their prob-
ability of being reinstated during free recall or adaptation. This makes encoding
of items in a secondary memory store through reinstatement introduce a further
bias of encoding strength. While a faithful representation of experience would ben-
efit from a linear exposure-reinstatement relation, nonlinearities in this relation
could also have adaptive effects: if strong memories are significantly enhanced the
secondary store would learn only the most relevant items (while the less relevant
might be accessible in the primary store before being dislodged by new learning). If
weaker memories are more likely to be retrieved the reinstatement would be noisier,
but also less likely to lose information.

The second-best match behaviour suggests that the network can be used as
a building block for making perceptual hypotheses. A single network will shift
between internally consistent but alternative matches to a given input, providing
hypotheses for downstream networks. Groups of networks receiving different input
modalities could also influence each other through mutual connections, allowing
different hypotheses to reinforce each other when the external evidence is not strong
enough to force the networks into specific attractor states. This may also suggest a
way for information from higher order association cortex to influence more primary
sensory processing in a top-down way.

The modulatory system of chapter 4 has not been explicitly simulated in this
thesis. Extending the model with an explicit neural network to detect significant
input appears relatively simple and has partially been done in the reward system of
Johansson et al. (2003). By adding several such modulatory systems affecting the
print-now signal (t) as a common output channel learning can be made depen-
dent on different motivational factors as well as specific systems such as familiarity
detection (which could plausibly be implemented within the BCPNN framework
through a mechanism similar to Bogacz and Brown (2003)). An interesting issue
is the learning of secondary reinforcers by prediction of primary (hardwired) re-
inforcers and how to maintain the overall stability of a system with self-regulated
plasticity.

8.4 Open Issues and Further Research

One thing that is clearly lacking in this thesis is recognition and storage of tem-
poral sequences rather than point attractors. In order to model more than just
retrieval of contexts the network needs to handle temporal interrelations. The ba-
sic BCPNN framework does not make any statement on whether the features are
features observed at the same time or at different times, but an implementation
needs to represent time-dependent information in a suitable manner. For example,
recognition of time series have been attempted using banks of delayed averages.
However, retrieval of time series also requires that the network dynamics mirrors
learned (arbitrary) patterns, which suggests the need for a different update dynam-
ics than the current. One way of allowing temporal association is to have different
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learning time constants for the probability estimates on the pre- and postsynap-
tic sides of the BCPNN learning rule (this is especially natural in the context of
higher order estimates used in a spiking network). This would create an asymmetric
weight matrix that could associate one state to the next. Other extensions involve
variants of the adaptation dynamics of chapter 5. However, it remains to be seen
how flexibly and optimally such approaches can produce sequence retrieval.

Another key area that remains to be developed is self-organising internal repre-
sentations. At present the hypercolumn structure is given, either due to a particular
form of data or just as an arbitrary architecture. In biological reality the division of
labour among minicolumns likely occur through a complex process of competition
and cooperativity; in the BCPNN this would correspond to a partitioning of units
depending on e.g. correlation or mutual information measures (Holst, 1997). There
is also a need for feature detectors and map formation in the BCPNN. Implement-
ing anti-Hebbian learning is relatively easy using the same unlearning mechanism
as in the adaptation model; hence some competitive map formation can likely be
reproduced within the BCPNN framework.

One of the deepest issues with the BCPNN is whether the network has a privi-
leged position in the space of neural network rules. Practical experience has shown
that it is extraordinarily resilient to variations in implementation, estimate calcu-
lation and changes to the update or learning equations (both deliberate changes
and accidental bugs) compared to other attractor type ANNs. While this is merely
anecdotal evidence, it seems likely that there should exist a particular relation-
ship between the attractor states of the network and the probability estimates
in weights and biases that could have an information theoretic interpretation.
The energy function for a recurrent BCPNN without hypercolumns (equation 3.9)
appears to maximise the weighted sum of information components (Orre, 1998)
>_i;log(P(xij)/P(x;) P(x;))7;7; with an additional soft constraint of minimising
>;log(P(z;))7;. The first term favours 7 that fits the correlation structure of
the world, while the second term can be seen as emphasising the most informa-
tive features. It appears likely that convergence corresponds to extremising some
information measure such as the Kullback-Leibler distance or entropy. If this is
s0, then the different BCPNN networks discussed in this thesis are performing an
information maximisation operation or an approximation to it, which could explain
the robustness of its operation.

The interpretation of cell assemblies as self-consistent estimates of the world
state provides an interesting starting point for deeper exploration of cortical mem-
ory. Beyond memory as mere information storage lies memory as formation of
knowledge. The emergence of representations binding together different concepts,
modalities and levels of abstraction into consistent wholes is the growth of knowl-
edge, and associative retrieval /reconstruction is an important part of reasoning.
Knowledge consists of prior information that help shape and direct newly acquired
information, both in order to cause behaviour and to update what is known.

This process cannot fully be studied in isolation in single networks as in this
thesis, but must be studied in terms of adaptive systems interacting with their
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environment. Memory and knowledge are not just about retaining information but
seeking it out and putting it into practical use, be it enhancing evolutionary fitness
or achieving individual goals. Hence an exploration of memory needs to involve
motivational systems orienting us towards relevant or rich sources of information:

All men by nature desire to know. An indication of this is the delight
we take in our senses; for even apart from their usefulness they are loved
for themselves; and above all others the sense of sight. For not only with
a view to action, but even when we are not going to do anything, we
prefer seeing (one might say) to everything else. The reason is that
this, most of all the senses, makes us know and brings to light many
differences between things.

By nature animals are born with the faculty of sensation, and from
sensation memory is produced in some of them, though not in others.
And therefore the former are more intelligent and apt at learning than
those which cannot remember.

— Aristotle, Metaphysics
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