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Abstract

The central question of development is: how does structure emerge from
a structureless state without an external organizing force? The answer
seems to be that self-organizing processes are able to produce complex
structures from simple initial states. In biological systems a major factor
appears to be diffusion of chemical factors guiding growth or differen-
tiation. The interaction between different diffusible factors can create
pattern forming instabilities giving rise to differentiation of initially ho-
mogeneous tissue. By following gradients axons can connect with the right
target cells, setting up neural networks. This paper is a review of models
of biological pattern formation and development.

1 Introduction

In the brain there are ≈ 1011 neurons with ≈ 104 synapses each, but the number
of human genes are likely on the order of a few tens of thousand [1] – a large
number, but far too few to specify the exact connectivity or position of the
neurons even if they can express many more proteins.

Self organization allows random or similar units to produce organized and
possibly very complex patterns without the need for a complex “recipe”. It
works by symmetry breaking: the initial undifferentiated state is an unstable
equilibrium where deviations are amplified by positive feedback. Random noise
in the initial state acts as a seed for the pattern, which can be highly regular
and reliable despite the random origin.

A simple recipe for a complex brain:

1. Grow a large number of similar cells.

2. Allow them to differentiate into different types of neurons depending on
their local chemical environment.

3. Diffuse long-range chemical signals.

4. Let different types of neurons send out connections towards their preferred
chemical.

5. Connect, and possibly remove failed cells and connections.
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This can be iterated, and influenced by neural activity and experience from the
outside.

This is a special case of development, combining both local cellular processes
where individual neurons develop their shapes, patterning on both local and
global scales, and the development of structures in response to these patterns.

In the following I will review some models of development and morphogen-
esis, the creation of bodies and form.

2 Reaction-Diffusion Systems

2.1 Turing patterns

In 1952 Alan Turing published a paper [2] showing how patterns might grow
from a nearly homogeneous situation and how diffusion could drive an instabil-
ity. (In the following, I am borrowing the description from [3])

Turing considered a one-dimensional chain of identical cells (k = 1, 2, . . .N)
containing various chemicals he called morphogens (form producers). If there are
m morphogens, the internal dynamics of each cell is controlled by m coupled
linear differential equations, while the coupling between the cells is modeled
by a simple diffusion process through the cellular membrane. It is not a real
biochemical model but rather a simple linearization of one.

A simple example with two morphogens with concentrations Xk and Yk.
Consider small deviations from the equilibrium state so that Xk = X0 +xk and
Yk = Y 0 + yk. Then Turing’s linear model is described by the equations

x′

k =axk + byk + µ[(xk+1 − xk) − (xk − xk−1)] (1)

y′

k
=cxk + dyk + ν[(yk+1 − yk) − (yk − yk−1)] (2)

where µ and ν are diffusion coefficients for the morphogens x and y respectively.
The coefficients a, b, c and d are constant and assumed to be set so that isolated
cells have a stable dynamics: a + d ≤ 0 and ad − bc > 0. If these inequalities
hold x, y → 0 over time.

It should be noted that these conditions force the signs of the matrix

(

a b
c d

)

(3)

into the forms
(

+ +
− −

) (

− −
+ +

) (

+ −
+ −

) (

− +
− +

)

(4)

The first two alternatives corresponds to a self-amplifying activator and a de-
pleted substrate. The second two alternatives corresponds to an activating
substance and an inhibiting substance where the activator activates itself and
the other, while the second substance inhibits itself and the first. See [4] for a
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Figure 1: Activator-inhibitor system in a linear chain of cells. The activator stimulates
production of more activator and inhibitor, while the inhibitor decreases activator
production. Both chemicals diffuse between cells.

more detailed analysis. For three-component systems the distinction between
activator and inhibitor/substrate becomes unclear.

We are used to that diffusion always smoothes out spatial inhomogeneities.
Turing showed that in this case nonzero µ and ν can lead to the emergence
of growing patterns – small disturbances will become large spatial patterns.
The reason our intuition doesn’t work here is that normally diffusion is about
diffusing scalar quantities, but in this case we actually have a diffusion of a
vector quantity, the pair (x, y).

Assume periodic boundary conditions so that xk(t) = xk+N (t) and yk(t) =
yk+N (t) (a ring of cells).

Introduce normal modes with amplitudes (ξs(t), ηs(t)) (i.e. we look at how
different Fourier components change over time):

(xk , yk) =
N−1
∑

s=0

(ξs, ηs) exp(2πiks/N) (5)

which satisfy the boundary conditions and an orthogonality relation

N
∑

k=1

exp(2πik(s − s′)/N) =

{

N if s − s′ = 0, N

0 otherwise
(6)

Using equation 2–6 we get the dynamic equations for the normal modes:

ξ′
s

=(a − 4µ sin2(πs/N))ξs + bηs (7)

η′

s =cηs + (d − 4ν sin2(πs/N))ηs (8)

These equations are decoupled for different values of s (different Fourier modes
do not interact) and are hence easier to analyze.

If we introduce σ = sin2(πs/N) (1 ≥ σ ≥ 0) and

aσ =a − 4µσ (9)

dσ =d − 4νσ (10)
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Figure 2: Stability of different wavelength modes for different values of the diffusion
parameter µ. The real parts of the characteristic exponents of different modes of a
20 cell chain with the coefficients ν = 0.3, a = −1, b = 1, c = −2, d = 1 are plotted
as a function of their wavelength. To the left µ = 0.6, all exponents are negative
and disturbances decay regardless of their wavelength. The “bubble” is caused by the
existence of two exponents. To the right µ = 2.8, some modes have become unstable
(a λ > 0) and hence will grow rapidly. This corresponds to the formation of regular
patterns with wavelength 4.

the characteristic exponents (ξ, η ∝ exp(λt)) become

λ =
1

2
(aσ + dσ) ±

1

2

√

(aσ + dσ)2 + 4(bc − aσdσ) (11)

When the real part of an exponent becomes positive that mode will become
unstable, and any deviation from ξ = η = 0 will grow over time. This means
that (xk , yk) will start to behave like a growing sinus-curve and no longer remain
spatially homogeneous.

For the case µ = ν = 0 the system starts in the region where the two
eigenvalues have negative real parts, and ξs, ηs → 0. As µ and ν are increased
above zero they will in the general case make λ gain a positive real part for
one or more s, ξs and ηs will not be attracted to 0, and small disturbances will
instead grow exponentially. A plot of λ as a function of wavelength can be seen
in figure 2.

Modes with smaller exponents will not grow as fast as the one with the
largest exponent, and hence it will dominate the pattern after a while.

An important relation is that µ 6= ν; if they are equal the instability cannot
develop. This is a problem when applying this kind of model to systems in
solution, as the diffusion coefficients of many chemicals are of the same order of
magnitude. However, the ratio µ/ν can become very close to 1 and the system
still exhibit instability if the Hill coefficients are high enough [4]. Turing pattern
formation is notably easier to produce experimentally in a solid + solution
situation.
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This model is fairly crude, the concentrations of morphogens grow without
bound and are not related by any biochemical kinetic equations. A more realistic
model would introduce a nonlinearity keeping the concentrations bounded. For
example, Turing developed an example system

X ′

k
=

1

32
(−7X2

k
− 50XkYk + 57) + µ(Xk+1 − 2Xk + Xk−1) (12)

Y ′

k =
1

32
(7X2

k + 50XkYk − 2Yk − 55) + ν(Yk+1 − 2Yk + Yk−1) (13)

with µ = 1/2 and ν = 1/4. Using the University of Manchester computer he
solved this in 1951 for a 20 cell ring, and found stable patterns.

The general reaction-diffusion system is written as

x′ = f(x) + D∇2x (14)

where D is a diagonal matrix of diffusion coefficients and f the reaction inter-
action. Although the equation has no preference for any special symmetry, it is
common for systems like this to exhibit complex symmetry breaking patterning.

An important example is the complex Ginzburg-Landau equation (f =
az − b|z|2z, where a, b and z are complex numbers), which appears in physi-
cal models of super-conductivity, super-fluidity and nonlinear waves. The real
and imaginary components of z act as activator and inhibitor, and enables a
wide variety of possible patterns in one, two and three dimensions [5]. The
reaction-diffusion pathway to pattern formation is very general. It can even
describe “the wave” in the crowd of a football stadium [6].

2.2 1D Reaction-Diffusion Systems

Hans Meinhardt has studied the development of the Hydra [7, 8]. The animal
has a foot, a body and a head with tentacles. If the body is split in two both
halves develop into full hydras. He models this by having an activator-inhibitor
pair with a diffusion length comparable to the body. As the body becomes longer
the homogeneous state becomes unstable and a single maximum occurs at one
end of the body, where the head develops. If the body is cut, the concentration
gradients adjust (more quickly in the head piece) and results into two similar
gradients with the same orientation. Other morphogens linked to the main
gradient can be introduced to explain foot and tentacle differentiation.

Segmentation can be explained [7, 8] using morphogen-regulated genetic ex-
pression. From a default gene state different genes become progressively acti-
vated by higher morphogen concentrations, forming a sequence along a mor-
phogen gradient.

Shugo Hamahashi and Hiroaki Kitano have studied the embryogenesis of
Drosophila melanogaster [9]. The model is based on reaction-diffusion system
where a number of gene transcription products diffuse within the cyncytium of
the fly egg.

The pattern formation is regulated by the maternal genes (genes with inho-
mogeneous distribution of mRNA at egg-laying), which regulate the polarity of
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the fly. These genes in turn control the gap genes which determine body seg-
mentation and in turn regulate pair-rule genes that determine segment polarity
and hometoic genes (which determine the developmental fate of each segment).

The model consists of diffusion of proteins along the body, with protein
production determined by transcription which occurs if promoting proteins have
concentrations within a certain range. Parameters are tuned using a genetic
algorithm [10]. The resulting patterns fit well with known patterning, and can
replicate many of the effects of mutations in the developmental system.

Meinhardt has modeled the patterns on sea shells using 1D diffusion-reaction
systems [11]. As the snail grows, material is added at the growing edge and this
is where pigments are inserted by pigment producing cells. Parallel lines are
produced by spatially static patterns of pigmentation, while perpendicular lines
are produced by synchronous oscillations along the growing edge and oblique
patterns can be produced by traveling waves. With several morphogens it is
possible to produce a wide variety of patterns found on sea shells.

2.3 2D Reaction-Diffusion Systems

A nice demonstration of the variety of patterns and dynamic behaviors that can
occur in a two-morphogen system in two dimensions is the Xmorphia website
[12] which explores the patterns found in the system

U ′ = −UV 2 + F (1 − U) + DU∇
2U (15)

V ′ = UV 2 − (F + k)V + DV ∇2V (16)

where DU = 2 · 10−5, DV = 10−4 for different values of F and k.
In general, reaction-diffusion models of this kind can produce stripe patterns,

labyrinths, spots and spirals, both stationary and non-stationary [5]. This has
been taken as a model for fur texture, fish patterning [13], butterfly wing pat-
terns and limb disc formation [7, 14].

In 2D the extra dimension allows further symmetry breaking. Since the
reaction-diffusion equations do not contain any preference for any particular
direction different unstable modes with the same spatial frequency but different
directions will compete with each other. Often the result is a regular square
or hexagonal pattern, although the order is often just local. If the morphogens
diffuse with different speeds in different directions the pattern tend to align with
a certain direction [15].

Striped patterns are in general less easy to generate than spotted patternss.
In two reactant reaction-diffusion systems stripe patterns tend to dissolve into
spots; by adding further reactants or changing the nonlinearity they can be
stabilized [16].

As a rule reaction-diffusion patterns are influenced by the shape of the do-
main where diffusion takes place. This can cause the change from spot-like pat-
terns to stripes when the domain is narrowed (as in the leopard’s tail), boundary
effects and on closed domains such as circles or spheres geometric restrictions
on patterns can induce symmetries [17]. When two reaction-diffusion systems
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producing stripes meet, for example where a limb of a striped animal meets
its body, a chevron pattern emerges which fits well with the patterning of the
Zebra [18].

The size of elements of the pattern are set by the diffusion coefficients. If the
underlying substrate of the pattern (such as the skin of an animal or the edge of
a mollusk shell) is growing features of the pattern (such as spots or stripes) will
retain their size but more features will appear as more space appears. For ex-
ample, the angelfish develops more strips as it grows [19], which is evidence that
its patterning is regulated by an ongoing process. In a similar manner growing
conical shells can exhibit increasing number of stripes [11]. Other animals lay
down their patterning during early development when their bodies are smaller,
and as they grow they retain the fixed pattern. This produces fewer spots or
stripes than if they emerged on later stages, and animals with smaller embryos
and shorter gestation periods tend to have simpler patterns [20, 21, 16]

3 Neurite Formation

During early development neurons start out rounded, but develop protrusions of
the cell membrane which later grow into neurites. The neurite with the highest
outgrowth rate often becomes the axon while the others become dendrites [22].

The branching shape of neurons may be due to activity-dependent effects
deforming the cell membrane. Especially the amount of calcium, increased by
electric activity, and neurotrophic factors secreted by other cells or growing
dendrites appear to be important.

One such model of activity dependent dendritic morphogenesis has been
created by Hentschel and Fine [23]. They model the growth of isolated initially
spherical cells, where outgrowth and retraction of the cell membrane are taken
to depend upon the local concentration of Ca2+ on the inside:

V (s) = a[Ca2+] − b[Ca2+]2 (17)

where V (s) is the growth normal to the surface at point s and a and b constants.
The calcium ions diffuse within the cell and are affected by membrane ion pumps.
As the concentration increases the local membrane potential is changed and
voltage-gated calcium channels may open, further increasing the concentration.

At a slightly convex patch of membrane more calcium will diffuse into the
local volume than at a flat or concave patch, resulting in a positive feedback
loop causing local membrane growth. As the membrane grows, more surface
will surround the volume and the calcium level will increase faster. At first the
elongation caused by this growth is straight, but eventually it becomes unstable
and branches, producing dendrite-like structures.

Another model is due to Hely, van Ooyen and Willshaw [24, 25]. They model
the behavior of a growth cone as a reaction-diffusion system with calcium as
an activator and cAMP as inhibitor. Calcium drives filopodia outgrowth, with
retraction if the concentration is too high. Simulations for a 10µm growth cone
shows a hot spot of high calcium concentration emerging at one side, causing
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the localized extensions of filopodia. This model could also be regarded as a
model of neurite formation, and appears quite compatible with the Hentschel
and Fine model.

See also [22] for a review on other forms of activity-dependent neural network
development.

4 Dendrites

Hely, Graham and van Ooyen has developed a model of dendrite elongation and
branching based on the interaction of calcium and MAP2 [26, 25]. MAP2 binds
to microtubuli in the dendrites and stabilize them. As it is phosphorylated it
moves the microtubuli further apart, making branching more likely.

Neurons are modeled as compartments containing calcium and MAP2 (which
in turn can be unbound, bound and phosphorylated). The chemical concentra-
tions are modeled using coupled differential equations, describing the diffusion
of MAP2 out from the soma, calcium influx and various reaction pathways
binding MAP2 to microtubuli. The start situation has a spherical cell with a
single dendritic compartment. The simulation is run with a time-step dt, during
which the terminal compartments are elongated by dx until they reach length
2dx, when they are split transversally into two dx compartments, one of which
is terminal. At each time-step the terminal compartment may split into two
branches with a probability Pbranch dependent on the local concentration of
bound and phosphorylated MAP2.

The model can produce dendritic trees with branching patterns similar to
biological neurons, with properties such as decreasing probability of branching,
similar levels of asymmetry, length and degree.

5 Axonogenesis

During development of the nervous system neurons send out axons which mi-
grate towards their targets. One of the mechanisms guiding the axons is the dif-
fusion of chemoattractant molecules such as netrins and neurotrophins through
the extracellular space. These molecules create a gradient of increasing concen-
tration which can be sensed and followed by the growth cone of the growing
axon1. There also exists chemorepellants which turn the axons away from cer-
tain tissues.

Contact adhesion and repulsion with the substrate (other cells and the extra-
cellular matrix) also mediate short range decisions of growth through receptors
in the growth cone. Growing axons can also lay down labelled pathways, that
other axons can follow. This is mediated by N-CAM, cadherins and fasciclins.
However, the pioneer axon must use chemotaxis to find its way.

1This was originally suggested by Ramon Y Cajal in 1893.
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5.1 Guidance

One important issue is how far chemical gradients can guide axons. At one end
of the growth cone the concentration of the chemoattractant is C, at the other
C + ∆C. In order to move towards the gradient the cone needs to detect and
measure the difference. This is done by averaging, over some time period, the
number of bound receptors at one end compared to the other.

This introduces some physical limitations [27]. If the concentration is low
compared to the dissociation constant of the receptor then few receptors will
be bound and guidance become hard. If the concentration is so high that most
receptors are bound, then there is also too little information to guide the growth.
Finally, the difference ∆C across the growth cone must be large enough to
overcome the noise in the binding process and in the intracellular signalling
that turns a binding difference into directional information.

A simple model (described in [27]) giving an estimate of the sensitivity as-
sumes a concentration C = q/(4πDr), where D is a diffusion coefficient (for
netrin-1 in collagen 10−7 cm2 s−1), q a production rate (≈ 10−7 nM/s) and r
the distance.

The minimal concentration change that can be detected is around 1%. If
the growth cone with width ∆r detects the fractional change ∆C/C, then we
get

∂C

∂r

∆r

C
≥ 0.01 (18)

which produces a maximum guidance distance rmax = 100∆r. For a 10µ growth
cone rmax = 1 mm.

If the growth cone detects absolute changes

∂C

∂r
∆r ≥

KD

100
(19)

rmax = 5

√

q∆r

πDKD

(20)

which also, coincidentally, for likely values of the constants produces rmax = 1
mm.

Goodhill also shows that this range can be extended to ≈ 1 cm by providing
a optimally shaped gradient of chemoattractant bound to the substrate. The
range can also be extended by exploiting receptors further away on the axon
(increasing ∆r). In nature, many other forms of chemotaxis are common, and
models suggest that there exists many trade-offs between different parameters
in order to optimize the growth or movement [28].

5.2 Bundling

Hentschel and van Ooyen describe a model of axon guidance and bundling [29].
Axons originate at a cluster of cells and are attracted towards another cell
cluster. The model includes three kinds of diffusible molecules:
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• A chemoattractant that is released by the target cells. This serves to guide
the axons towards their targets.

• A chemoattractant that is released by the axon growth cones. This makes
the axons bundle together.

• A chemorepellant that is released by the axon growth cones at a rate
dependent on the concentration of target chemoattractant. This serves to
dissolve the bundle on reaching the target area.

The chemicals are modeled as diffusive fields with point sources in the cells
or cones, and different diffusion constants and rates of production. It is assumed
that the speed of diffusion is larger than the speed of cone growth. The growth
cones will grow along the weighted sum of the local concentration gradients.

This model is able to demonstrate fasciculation, axon guidance and defas-
ciculation and target innervation. It was found that target derived chemoat-
tractant gradients were not enough to debundle the axons, the chemorepellant
was necessary. The organization of innervation is not random but topologically
ordered due to the organization in the initial bundling.

A second model of the authors deals with contact interactions between the
growth cones instead of diffusion. Bundling occurs when two axons grow close
together and has a strength dependent on the concentration of target chemoat-
tractant.

It was found that only local bundling occurs, with no tendency for global
bundling. Some axons grow towards the targets at a faster rate, creating paths
for others to follow. Debundling does not occur well.

6 Cellular Approaches to Development Model-

ing

Reaction-diffusion models generally assume a continuous field or a regular array
of identical cells, and the dendrite and axon models discussed above mainly
deal with a single cell. More complex simulations deal with cells that can be
arranged arbitrarily, move or divide.

The perfect C. elegans project [30] attempts to model all the cells in C.
elegans and to fill in missing data with simulated cells. The model computes
forces between cells using inverse kinematics.

Kurt Fleischer has developed a multicellular developmental model for sim-
plified cells including effects of diffusion of chemical signals, cell collisions, ad-
hesion, cell recognition and motion equations. Cells are spheres able to move,
divide, release diffusing chemicals, change size or express different chemicals on
the surface. Using the model he has demonstrated axis formation, segmented
patterns, generation of hierarchical structures, regeneration after damage, ax-
onogenesis, spiral growth and formation of cell layers [31, 32].

In real tissues cells are closely packed and tend to take on polyhedral shapes.
This can be modeled through a topological representation where the cells are

10



vertices of a graph and neighboring cells linked by edges. The dual of the graph
corresponds to the actual cells. This makes it easy to calculate neighbors and
perform local chemical diffusion, and cell movement, cell division and cell death
can be modeled by graph rewriting [33]. This was originally proposed by Matela
and Fletterick [34] as a model of cell sorting.

Cell sorting occurs when different cell types are mixed with each other.
The fragment of tissue rounds up into an almost spherical shape and one cell
type aggregates centrally and another type surrounding it. If several types are
included, they tend to form concentric shells. Steinberg suggested that cells
adhere to each other with different strengths and interact to maximize adhesive
energy [35]. This behavior can be modeled by allowing cells to attempt to move
randomly, and if this move increases adhesion it will occur [36].

Another popular subject of multi-cell simulations is the behavior of slime
molds. Slime molds begin their life as single-celled organisms that forage in-
dependently. When food becomes scarce they begin to aggregate, guided by
a cyclic cAMP chemical signal secreted by groups of cells. They form a slug-
like mass, which then differentiates into a tower-like spore capsule. Among
other models, the Cell Programming Language of Pankaj Agarwal, which im-
plements a topological representation, has been used to model the aggregation
phenomenon [36]. A.F.M. Mare and P. Hogeweg have modeled the differen-
tiation stage through a model including both cell adhesion, cAMP diffusion,
pressure interaction and cell differentiation [37].

The use of topological models to model cell cleavage in the frog egg and
neural differentiation in the fruit fly visual system has also been demonstrated
[33]. In the later case a reaction-diffusion system was imposed on the cell graph
and allowed to control the differentiation of the cells.

7 Phenomenological models

In addition to these attempts at biological realistic models of the emergence
of differentiated organic structures, there are many approaches that are phe-
nomenological. Phenomenological models do not try to model the underlying
biological reality of the system strongly, but instead seeks to reproduce observed
phenomena using simple models. See [38] for a brief tour.

Some of the most popular models are:

• Probabilistic models: growth is modeled as a stochastic process. A com-
mon application is describing the branching behavior of neurons, fitting
the shapes to observed neuron properties (see [39, chapter 7] for a review).

• Cellular automata: a regular 1, 2 or 3-dimensional grid of cells is used,
where each cell can have one of a discrete number of states. Each time-step
all cells update their states according to a rule dependent only on their
own state and the states of their neighbor. CAs are capable of exhibiting
self-replicating behavior, reaction-diffusion dynamics, various growth and
branching phenomena depending on the update rules.
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• Diffusion-limited aggregation: growth occurs when diffusing particles con-
nect to the growing structure, or proportional to the local concentration
of a diffusing substrate depleted by the growth. This usually leads to a
dendritic pattern. DLA has mainly been used for simulations in physics
and inorganic chemistry, but also for modeling sponges [40].

• L-systems (Lindenmeyer systems): The organism is modeled as a string
subjected to iterative rewriting corresponding to development, and the
finished string is interpreted as a graphical object. Mainly used for plant
modeling, although they have been used for cellular structures. Using con-
text sensitive rules diffusion of plant hormones can be modeled. [41, 42].
The L-Neuron system of Ascoli and Krichmar uses a L-system to describe
neuron topology and sizes, and then samples parameter values from exper-
imental statistical distributions to generate multiple, non-identical virtual
neurons [43, 44].
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